Cargando…
Inflammasome as a Therapeutic Target for Cancer Prevention and Treatment
Chronic inflammation is a critical modulator of carcinogenesis through secretion of inflammatory cytokines, which leads to the formation of an inflammatory microenvironment. In this process, the inflammasome plays an important role in the expression and activation of interleukin (IL)-1β and IL-18 to...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Cancer Prevention
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503217/ https://www.ncbi.nlm.nih.gov/pubmed/28698859 http://dx.doi.org/10.15430/JCP.2017.22.2.62 |
Sumario: | Chronic inflammation is a critical modulator of carcinogenesis through secretion of inflammatory cytokines, which leads to the formation of an inflammatory microenvironment. In this process, the inflammasome plays an important role in the expression and activation of interleukin (IL)-1β and IL-18 to promote cancer development. The inflammasome is a multiprotein complex consisting of several nucleotide-binding domain and leucine-rich repeat containing receptor, adaptor proteins, and caspase 1 (CASP1). It senses the various intracellular (damage-associated molecular patterns) and extracellular (pathogen-associated molecular patterns) stimuli. A primed inflammasome recruits adaptor proteins, activates CASP1 to enhance the proteolytic cleavage of pro-IL-1β and IL-18, and sends the signal to respond to each insult. Depending on stimuli and cell contexts, several inflammasomes are closely associated with the initiation and promotion of carcinogenesis. In contrast, inflammasomes also show an ambivalent effect on carcinogenesis by enhancing inflammatory cell death (pyroptosis) and repairing damaged tissues. Although the inflammasome plays a controversial role in carcinogenesis, it may be a promising target for human cancer prevention and treatment. A more in-depth study on the role of the inflammasome in carcinogenesis, based on stimuli, cell contexts, and cancer stages, can lead to the development of novel therapeutic strategies against malignant human cancers. |
---|