Cargando…

Systems biology of the modified branched Entner-Doudoroff pathway in Sulfolobus solfataricus

Sulfolobus solfataricus is a thermoacidophilic Archaeon that thrives in terrestrial hot springs (solfatares) with optimal growth at 80°C and pH 2–4. It catabolizes specific carbon sources, such as D-glucose, to pyruvate via the modified Entner-Doudoroff (ED) pathway. This pathway has two parallel br...

Descripción completa

Detalles Bibliográficos
Autores principales: Figueiredo, Ana Sofia, Kouril, Theresa, Esser, Dominik, Haferkamp, Patrick, Wieloch, Patricia, Schomburg, Dietmar, Ruoff, Peter, Siebers, Bettina, Schaber, Jörg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503249/
https://www.ncbi.nlm.nih.gov/pubmed/28692669
http://dx.doi.org/10.1371/journal.pone.0180331
_version_ 1783249063176568832
author Figueiredo, Ana Sofia
Kouril, Theresa
Esser, Dominik
Haferkamp, Patrick
Wieloch, Patricia
Schomburg, Dietmar
Ruoff, Peter
Siebers, Bettina
Schaber, Jörg
author_facet Figueiredo, Ana Sofia
Kouril, Theresa
Esser, Dominik
Haferkamp, Patrick
Wieloch, Patricia
Schomburg, Dietmar
Ruoff, Peter
Siebers, Bettina
Schaber, Jörg
author_sort Figueiredo, Ana Sofia
collection PubMed
description Sulfolobus solfataricus is a thermoacidophilic Archaeon that thrives in terrestrial hot springs (solfatares) with optimal growth at 80°C and pH 2–4. It catabolizes specific carbon sources, such as D-glucose, to pyruvate via the modified Entner-Doudoroff (ED) pathway. This pathway has two parallel branches, the semi-phosphorylative and the non-phosphorylative. However, the strategy of S.solfataricus to endure in such an extreme environment in terms of robustness and adaptation is not yet completely understood. Here, we present the first dynamic mathematical model of the ED pathway parameterized with quantitative experimental data. These data consist of enzyme activities of the branched pathway at 70°C and 80°C and of metabolomics data at the same temperatures for the wild type and for a metabolic engineered knockout of the semi-phosphorylative branch. We use the validated model to address two questions: 1. Is this system more robust to perturbations at its optimal growth temperature? 2. Is the ED robust to deletion and perturbations? We employed a systems biology approach to answer these questions and to gain further knowledge on the emergent properties of this biological system. Specifically, we applied deterministic and stochastic approaches to study the sensitivity and robustness of the system, respectively. The mathematical model we present here, shows that: 1. Steady state metabolite concentrations of the ED pathway are consistently more robust to stochastic internal perturbations at 80°C than at 70°C; 2. These metabolite concentrations are highly robust when faced with the knockout of either branch. Connected with this observation, these two branches show different properties at the level of metabolite production and flux control. These new results reveal how enzyme kinetics and metabolomics synergizes with mathematical modelling to unveil new systemic properties of the ED pathway in S.solfataricus in terms of its adaptation and robustness.
format Online
Article
Text
id pubmed-5503249
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-55032492017-07-25 Systems biology of the modified branched Entner-Doudoroff pathway in Sulfolobus solfataricus Figueiredo, Ana Sofia Kouril, Theresa Esser, Dominik Haferkamp, Patrick Wieloch, Patricia Schomburg, Dietmar Ruoff, Peter Siebers, Bettina Schaber, Jörg PLoS One Research Article Sulfolobus solfataricus is a thermoacidophilic Archaeon that thrives in terrestrial hot springs (solfatares) with optimal growth at 80°C and pH 2–4. It catabolizes specific carbon sources, such as D-glucose, to pyruvate via the modified Entner-Doudoroff (ED) pathway. This pathway has two parallel branches, the semi-phosphorylative and the non-phosphorylative. However, the strategy of S.solfataricus to endure in such an extreme environment in terms of robustness and adaptation is not yet completely understood. Here, we present the first dynamic mathematical model of the ED pathway parameterized with quantitative experimental data. These data consist of enzyme activities of the branched pathway at 70°C and 80°C and of metabolomics data at the same temperatures for the wild type and for a metabolic engineered knockout of the semi-phosphorylative branch. We use the validated model to address two questions: 1. Is this system more robust to perturbations at its optimal growth temperature? 2. Is the ED robust to deletion and perturbations? We employed a systems biology approach to answer these questions and to gain further knowledge on the emergent properties of this biological system. Specifically, we applied deterministic and stochastic approaches to study the sensitivity and robustness of the system, respectively. The mathematical model we present here, shows that: 1. Steady state metabolite concentrations of the ED pathway are consistently more robust to stochastic internal perturbations at 80°C than at 70°C; 2. These metabolite concentrations are highly robust when faced with the knockout of either branch. Connected with this observation, these two branches show different properties at the level of metabolite production and flux control. These new results reveal how enzyme kinetics and metabolomics synergizes with mathematical modelling to unveil new systemic properties of the ED pathway in S.solfataricus in terms of its adaptation and robustness. Public Library of Science 2017-07-10 /pmc/articles/PMC5503249/ /pubmed/28692669 http://dx.doi.org/10.1371/journal.pone.0180331 Text en © 2017 Figueiredo et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Figueiredo, Ana Sofia
Kouril, Theresa
Esser, Dominik
Haferkamp, Patrick
Wieloch, Patricia
Schomburg, Dietmar
Ruoff, Peter
Siebers, Bettina
Schaber, Jörg
Systems biology of the modified branched Entner-Doudoroff pathway in Sulfolobus solfataricus
title Systems biology of the modified branched Entner-Doudoroff pathway in Sulfolobus solfataricus
title_full Systems biology of the modified branched Entner-Doudoroff pathway in Sulfolobus solfataricus
title_fullStr Systems biology of the modified branched Entner-Doudoroff pathway in Sulfolobus solfataricus
title_full_unstemmed Systems biology of the modified branched Entner-Doudoroff pathway in Sulfolobus solfataricus
title_short Systems biology of the modified branched Entner-Doudoroff pathway in Sulfolobus solfataricus
title_sort systems biology of the modified branched entner-doudoroff pathway in sulfolobus solfataricus
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503249/
https://www.ncbi.nlm.nih.gov/pubmed/28692669
http://dx.doi.org/10.1371/journal.pone.0180331
work_keys_str_mv AT figueiredoanasofia systemsbiologyofthemodifiedbranchedentnerdoudoroffpathwayinsulfolobussolfataricus
AT kouriltheresa systemsbiologyofthemodifiedbranchedentnerdoudoroffpathwayinsulfolobussolfataricus
AT esserdominik systemsbiologyofthemodifiedbranchedentnerdoudoroffpathwayinsulfolobussolfataricus
AT haferkamppatrick systemsbiologyofthemodifiedbranchedentnerdoudoroffpathwayinsulfolobussolfataricus
AT wielochpatricia systemsbiologyofthemodifiedbranchedentnerdoudoroffpathwayinsulfolobussolfataricus
AT schomburgdietmar systemsbiologyofthemodifiedbranchedentnerdoudoroffpathwayinsulfolobussolfataricus
AT ruoffpeter systemsbiologyofthemodifiedbranchedentnerdoudoroffpathwayinsulfolobussolfataricus
AT siebersbettina systemsbiologyofthemodifiedbranchedentnerdoudoroffpathwayinsulfolobussolfataricus
AT schaberjorg systemsbiologyofthemodifiedbranchedentnerdoudoroffpathwayinsulfolobussolfataricus