Cargando…
PDK1 inhibitor GSK2334470 exerts antitumor activity in multiple myeloma and forms a novel multitargeted combination with dual mTORC1/C2 inhibitor PP242
A deeper understanding of the complex pathogenesis of multiple myeloma (MM) continues to lead to novel therapeutic approaches. Prior studies suggest that 3-phosphoinositide-dependent kinase 1 (PDK1) is expressed and active, acting as a crucial regulator of molecules that are essential for myelomagen...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503605/ https://www.ncbi.nlm.nih.gov/pubmed/28402933 http://dx.doi.org/10.18632/oncotarget.16642 |
Sumario: | A deeper understanding of the complex pathogenesis of multiple myeloma (MM) continues to lead to novel therapeutic approaches. Prior studies suggest that 3-phosphoinositide-dependent kinase 1 (PDK1) is expressed and active, acting as a crucial regulator of molecules that are essential for myelomagenesis. In the present study, we show that GSK2334470 (GSK-470), a novel and highly specific inhibitor of PDK1, induces potent cytotoxicity in MM cell lines including Dexamethasone-resistant cell line, but not in human normal cells. Insulin-like growth factor-1 could not rescue GSK-470-induced cell death. Moreover, GSK-470 down-modulates phosphor-PDK1, thereby inhibiting downstream phosphor-AKT at Thr308 and mTOR complex 1 (mTORC1) activity. However, GSK-470 could not affect mTORC2 activity and phosphor-AKT at Ser473. RPMI 8226 and OPM-2 cells with low expression of PTEN show relative resistant to GSK-470. Knockout of PTEN by shRNA resulted in a partial reversion of GSK-470-mediated growth inhibition, whereas overexpression of PTEN enhanced myeloma cell sensitivity to GSK-470, suggesting that the sensitivity to GSK-470 is correlated with PTEN expression statue in MM cells. Combining PP242, a dual mTORC1/C2 inhibitor, with GSK-470, had greater antimyeloma activity than either one alone in vitro and in MM xenograft model established in immunodeficient mice. In particular, this combination was able to result in a complete inhibition of mTORC1/C2 and full activity of AKT. Together, these findings raise the possibility that combining PDK1 antagonist GSK-470 with mTORC1/C2 inhibitors may represent a novel strategy against MM including drug-resistant myeloma, regardless of PTEN expression status. |
---|