Cargando…

A TSPO ligand attenuates brain injury after intracerebral hemorrhage

Intracerebral hemorrhage (ICH) is a devastating disease without effective treatment. After ICH, the immediate infiltration of leukocytes and activation of microglia are accompanied by a rapid up-regulation of the 18-kDa translocator protein (TSPO). TSPO ligands have shown anti-inflammatory and neuro...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Minshu, Ren, Honglei, Sheth, Kevin N., Shi, Fu-Dong, Liu, Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Federation of American Societies for Experimental Biology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503714/
https://www.ncbi.nlm.nih.gov/pubmed/28416580
http://dx.doi.org/10.1096/fj.201601377RR
Descripción
Sumario:Intracerebral hemorrhage (ICH) is a devastating disease without effective treatment. After ICH, the immediate infiltration of leukocytes and activation of microglia are accompanied by a rapid up-regulation of the 18-kDa translocator protein (TSPO). TSPO ligands have shown anti-inflammatory and neuroprotective properties in models of CNS injury. In this study, we determined the impact of a TSPO ligand, etifoxine, on brain injury and inflammation in 2 mouse models of ICH. TSPO was up-regulated in Iba1(+) cells from brains of patients with ICH and in CD11b(+)CD45(int) cells from mice subjected to collagenase-induced ICH. Etifoxine significantly reduced neurodeficits and perihematomal brain edema after ICH induction by injection of either autologous blood or collagenase. In collagenase-induced ICH mice, the protection of etifoxine was associated with reduced leukocyte infiltration into the brain and microglial production of IL-6 and TNF-α. Etifoxine improved blood–brain barrier integrity and diminished cell death. Notably, the protective effect of etifoxine was abolished in mice depleted of microglia by using a colony-stimulating factor 1 receptor inhibitor. These results indicate that the TSPO ligand etifoxine attenuates brain injury and inflammation after ICH. TSPO may be a viable therapeutic target that requires further investigations in ICH.—Li, M., Ren, H., Sheth, K. N., Shi, F.-D., Liu, Q. A TSPO ligand attenuates brain injury after intracerebral hemorrhage.