Cargando…

High throughput sequencing of RNA transcriptomes in Ruditapes philippinarum identifies genes involved in osmotic stress response

Ruditapes philippinarum, is an economically important marine bivalve species. The ability to cope with low salinity stress is quite important for the survival of aquatic species under natural conditions. In this study, the transcriptional response of the Manila clam to low salinity stress was charac...

Descripción completa

Detalles Bibliográficos
Autores principales: Nie, Hongtao, Jiang, Liwen, Chen, Peng, Huo, Zhongming, Yang, Feng, Yan, Xiwu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504028/
https://www.ncbi.nlm.nih.gov/pubmed/28694531
http://dx.doi.org/10.1038/s41598-017-05397-8
Descripción
Sumario:Ruditapes philippinarum, is an economically important marine bivalve species. The ability to cope with low salinity stress is quite important for the survival of aquatic species under natural conditions. In this study, the transcriptional response of the Manila clam to low salinity stress was characterized using RNA sequencing. The transcriptomes of a low salinity-treatment group (FRp1, FRp2), which survived under low salinity stress, and control group (SRp1, SRp2), which was not subjected to low salinity stress, were sequenced with the Illumina HiSeq platform. A total of 196,578 unigenes were generated. GO and KEGG analyses revealed that signal transduction, immune response, cellular component organization or biogenesis, and energy production processes were the most highly enriched pathways among the genes that were differentially expressed under low salinity stress. All these pathways could be assigned to the following biological functions in the low salinity tolerant Manila clam: signal response to low salinity stress, antioxidant response, intracellular free amino acid transport and metabolism, energy production and conversion, cell signaling pathways, and regulation of ionic content and cell volume. In summary, this is the first study using high-throughput sequencing to identify gene targets that could explain osmotic regulation mechanisms under salinity stress in R. philippinarum.