Cargando…

The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress

Staphylococcus aureus is a worldwide pathogen that colonizes the human nasal cavity and is a major cause of respiratory and cutaneous infections. In the nasal cavity, S. aureus thrives with high concentrations of nitric oxide (NO) produced by the innate immune effectors and has available for growth...

Descripción completa

Detalles Bibliográficos
Autores principales: Carvalho, Sandra M., de Jong, Anne, Kloosterman, Tomas G., Kuipers, Oscar P., Saraiva, Lígia M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504149/
https://www.ncbi.nlm.nih.gov/pubmed/28744267
http://dx.doi.org/10.3389/fmicb.2017.01273
_version_ 1783249226904371200
author Carvalho, Sandra M.
de Jong, Anne
Kloosterman, Tomas G.
Kuipers, Oscar P.
Saraiva, Lígia M.
author_facet Carvalho, Sandra M.
de Jong, Anne
Kloosterman, Tomas G.
Kuipers, Oscar P.
Saraiva, Lígia M.
author_sort Carvalho, Sandra M.
collection PubMed
description Staphylococcus aureus is a worldwide pathogen that colonizes the human nasal cavity and is a major cause of respiratory and cutaneous infections. In the nasal cavity, S. aureus thrives with high concentrations of nitric oxide (NO) produced by the innate immune effectors and has available for growth slow-metabolizing free hexoses, such as galactose. Here, we have used deep sequencing transcriptomic analysis (RNA-Seq) and (1)H-NMR to uncover how S. aureus grown on galactose, a major carbon source present in the nasopharynx, survives the deleterious action of NO. We observed that, like on glucose, S. aureus withstands high concentrations of NO when using galactose. Data indicate that this resistance is, most likely, achieved through a distinct metabolism that relies on the increased production of amino acids, such as glutamate, threonine, and branched-chain amino acids (BCAAs). Moreover, we found that under NO stress the S. aureus α-acetolactate synthase (ALS) enzyme, which converts pyruvate into α-acetolactate, plays an important role. ALS is proposed to prevent intracellular acidification, to promote the production of BCAAs and the activation of the TCA cycle. Additionally, ALS is shown to contribute to the successful infection of murine macrophages. Furthermore, ALS contributes to the resistance of S. aureus to beta-lactam antibiotics such as methicillin and oxacillin.
format Online
Article
Text
id pubmed-5504149
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-55041492017-07-25 The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress Carvalho, Sandra M. de Jong, Anne Kloosterman, Tomas G. Kuipers, Oscar P. Saraiva, Lígia M. Front Microbiol Microbiology Staphylococcus aureus is a worldwide pathogen that colonizes the human nasal cavity and is a major cause of respiratory and cutaneous infections. In the nasal cavity, S. aureus thrives with high concentrations of nitric oxide (NO) produced by the innate immune effectors and has available for growth slow-metabolizing free hexoses, such as galactose. Here, we have used deep sequencing transcriptomic analysis (RNA-Seq) and (1)H-NMR to uncover how S. aureus grown on galactose, a major carbon source present in the nasopharynx, survives the deleterious action of NO. We observed that, like on glucose, S. aureus withstands high concentrations of NO when using galactose. Data indicate that this resistance is, most likely, achieved through a distinct metabolism that relies on the increased production of amino acids, such as glutamate, threonine, and branched-chain amino acids (BCAAs). Moreover, we found that under NO stress the S. aureus α-acetolactate synthase (ALS) enzyme, which converts pyruvate into α-acetolactate, plays an important role. ALS is proposed to prevent intracellular acidification, to promote the production of BCAAs and the activation of the TCA cycle. Additionally, ALS is shown to contribute to the successful infection of murine macrophages. Furthermore, ALS contributes to the resistance of S. aureus to beta-lactam antibiotics such as methicillin and oxacillin. Frontiers Media S.A. 2017-07-11 /pmc/articles/PMC5504149/ /pubmed/28744267 http://dx.doi.org/10.3389/fmicb.2017.01273 Text en Copyright © 2017 Carvalho, de Jong, Kloosterman, Kuipers and Saraiva. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Carvalho, Sandra M.
de Jong, Anne
Kloosterman, Tomas G.
Kuipers, Oscar P.
Saraiva, Lígia M.
The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress
title The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress
title_full The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress
title_fullStr The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress
title_full_unstemmed The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress
title_short The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress
title_sort staphylococcus aureus α-acetolactate synthase als confers resistance to nitrosative stress
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504149/
https://www.ncbi.nlm.nih.gov/pubmed/28744267
http://dx.doi.org/10.3389/fmicb.2017.01273
work_keys_str_mv AT carvalhosandram thestaphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress
AT dejonganne thestaphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress
AT kloostermantomasg thestaphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress
AT kuipersoscarp thestaphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress
AT saraivaligiam thestaphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress
AT carvalhosandram staphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress
AT dejonganne staphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress
AT kloostermantomasg staphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress
AT kuipersoscarp staphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress
AT saraivaligiam staphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress