Cargando…
The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress
Staphylococcus aureus is a worldwide pathogen that colonizes the human nasal cavity and is a major cause of respiratory and cutaneous infections. In the nasal cavity, S. aureus thrives with high concentrations of nitric oxide (NO) produced by the innate immune effectors and has available for growth...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504149/ https://www.ncbi.nlm.nih.gov/pubmed/28744267 http://dx.doi.org/10.3389/fmicb.2017.01273 |
_version_ | 1783249226904371200 |
---|---|
author | Carvalho, Sandra M. de Jong, Anne Kloosterman, Tomas G. Kuipers, Oscar P. Saraiva, Lígia M. |
author_facet | Carvalho, Sandra M. de Jong, Anne Kloosterman, Tomas G. Kuipers, Oscar P. Saraiva, Lígia M. |
author_sort | Carvalho, Sandra M. |
collection | PubMed |
description | Staphylococcus aureus is a worldwide pathogen that colonizes the human nasal cavity and is a major cause of respiratory and cutaneous infections. In the nasal cavity, S. aureus thrives with high concentrations of nitric oxide (NO) produced by the innate immune effectors and has available for growth slow-metabolizing free hexoses, such as galactose. Here, we have used deep sequencing transcriptomic analysis (RNA-Seq) and (1)H-NMR to uncover how S. aureus grown on galactose, a major carbon source present in the nasopharynx, survives the deleterious action of NO. We observed that, like on glucose, S. aureus withstands high concentrations of NO when using galactose. Data indicate that this resistance is, most likely, achieved through a distinct metabolism that relies on the increased production of amino acids, such as glutamate, threonine, and branched-chain amino acids (BCAAs). Moreover, we found that under NO stress the S. aureus α-acetolactate synthase (ALS) enzyme, which converts pyruvate into α-acetolactate, plays an important role. ALS is proposed to prevent intracellular acidification, to promote the production of BCAAs and the activation of the TCA cycle. Additionally, ALS is shown to contribute to the successful infection of murine macrophages. Furthermore, ALS contributes to the resistance of S. aureus to beta-lactam antibiotics such as methicillin and oxacillin. |
format | Online Article Text |
id | pubmed-5504149 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-55041492017-07-25 The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress Carvalho, Sandra M. de Jong, Anne Kloosterman, Tomas G. Kuipers, Oscar P. Saraiva, Lígia M. Front Microbiol Microbiology Staphylococcus aureus is a worldwide pathogen that colonizes the human nasal cavity and is a major cause of respiratory and cutaneous infections. In the nasal cavity, S. aureus thrives with high concentrations of nitric oxide (NO) produced by the innate immune effectors and has available for growth slow-metabolizing free hexoses, such as galactose. Here, we have used deep sequencing transcriptomic analysis (RNA-Seq) and (1)H-NMR to uncover how S. aureus grown on galactose, a major carbon source present in the nasopharynx, survives the deleterious action of NO. We observed that, like on glucose, S. aureus withstands high concentrations of NO when using galactose. Data indicate that this resistance is, most likely, achieved through a distinct metabolism that relies on the increased production of amino acids, such as glutamate, threonine, and branched-chain amino acids (BCAAs). Moreover, we found that under NO stress the S. aureus α-acetolactate synthase (ALS) enzyme, which converts pyruvate into α-acetolactate, plays an important role. ALS is proposed to prevent intracellular acidification, to promote the production of BCAAs and the activation of the TCA cycle. Additionally, ALS is shown to contribute to the successful infection of murine macrophages. Furthermore, ALS contributes to the resistance of S. aureus to beta-lactam antibiotics such as methicillin and oxacillin. Frontiers Media S.A. 2017-07-11 /pmc/articles/PMC5504149/ /pubmed/28744267 http://dx.doi.org/10.3389/fmicb.2017.01273 Text en Copyright © 2017 Carvalho, de Jong, Kloosterman, Kuipers and Saraiva. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Carvalho, Sandra M. de Jong, Anne Kloosterman, Tomas G. Kuipers, Oscar P. Saraiva, Lígia M. The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress |
title | The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress |
title_full | The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress |
title_fullStr | The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress |
title_full_unstemmed | The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress |
title_short | The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress |
title_sort | staphylococcus aureus α-acetolactate synthase als confers resistance to nitrosative stress |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504149/ https://www.ncbi.nlm.nih.gov/pubmed/28744267 http://dx.doi.org/10.3389/fmicb.2017.01273 |
work_keys_str_mv | AT carvalhosandram thestaphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress AT dejonganne thestaphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress AT kloostermantomasg thestaphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress AT kuipersoscarp thestaphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress AT saraivaligiam thestaphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress AT carvalhosandram staphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress AT dejonganne staphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress AT kloostermantomasg staphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress AT kuipersoscarp staphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress AT saraivaligiam staphylococcusaureusaacetolactatesynthasealsconfersresistancetonitrosativestress |