Cargando…
Machine Learning Approach for Classifying Multiple Sclerosis Courses by Combining Clinical Data with Lesion Loads and Magnetic Resonance Metabolic Features
Purpose: The purpose of this study is classifying multiple sclerosis (MS) patients in the four clinical forms as defined by the McDonald criteria using machine learning algorithms trained on clinical data combined with lesion loads and magnetic resonance metabolic features. Materials and Methods: Ei...
Autores principales: | Ion-Mărgineanu, Adrian, Kocevar, Gabriel, Stamile, Claudio, Sima, Diana M., Durand-Dubief, Françoise, Van Huffel, Sabine, Sappey-Marinier, Dominique |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504183/ https://www.ncbi.nlm.nih.gov/pubmed/28744195 http://dx.doi.org/10.3389/fnins.2017.00398 |
Ejemplares similares
-
Graph Theory-Based Brain Connectivity for Automatic Classification of Multiple Sclerosis Clinical Courses
por: Kocevar, Gabriel, et al.
Publicado: (2016) -
Classification of Multiple Sclerosis Clinical Profiles via Graph Convolutional Neural Networks
por: Marzullo, Aldo, et al.
Publicado: (2019) -
Classification of multiple sclerosis clinical profiles using machine learning and grey matter connectome
por: Barile, Berardino, et al.
Publicado: (2022) -
A Sensitive and Automatic White Matter Fiber Tracts Model for Longitudinal Analysis of Diffusion Tensor Images in Multiple Sclerosis
por: Stamile, Claudio, et al.
Publicado: (2016) -
New multiple sclerosis lesion segmentation and detection using pre-activation U-Net
por: Ashtari, Pooya, et al.
Publicado: (2022)