Cargando…

Nitrogen Fertilizer Deep Placement for Increased Grain Yield and Nitrogen Recovery Efficiency in Rice Grown in Subtropical China

Field plot experiments were conducted over 3 years (from April 2014 to November 2016) in a double-rice (Oryza sativa L.) cropping system in subtropical China to evaluate the effects of N fertilizer placement on grain yield and N recovery efficiency (NRE). Different N application methods included: no...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Meng, Li, Guilong, Li, Weitao, Liu, Jia, Liu, Ming, Jiang, Chunyu, Li, Zhongpei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504192/
https://www.ncbi.nlm.nih.gov/pubmed/28744302
http://dx.doi.org/10.3389/fpls.2017.01227
Descripción
Sumario:Field plot experiments were conducted over 3 years (from April 2014 to November 2016) in a double-rice (Oryza sativa L.) cropping system in subtropical China to evaluate the effects of N fertilizer placement on grain yield and N recovery efficiency (NRE). Different N application methods included: no N application (CK); N broadcast application (NBP); N and NPK deep placement (NDP and NPKDP, respectively). Results showed that grain yield and apparent NRE significantly increased for NDP and NPKDP as compared to NBP. The main reason was that N deep placement (NDP) increased the number of productive panicle per m(-2). To further evaluate the increase, a pot experiment was conducted to understand the N supply in different soil layers in NDP during the whole rice growing stage and a (15)N tracing technique was used in a field experiment to investigate the fate of urea-(15)N in the rice–soil system during rice growth and at maturity. The pot experiment indicated that NDP could maintain a higher N supply in deep soil layers than N broadcast for 52 days during rice growth. The (15)N tracing study showed that NDP could maintain much higher fertilizer N in the 5–20 cm soil layer during rice growth and could induce plant to absorb more N from fertilizer and soil than NBP, which led to higher NRE. One important finding was that NDP and NPKDP significantly increased fertilizer NRE but did not lead to N declined in soil compared to NBP. Compared to NPK, NPKDP induced rice plants to absorb more fertilizer N rather than soil N.