Cargando…
Personalized Offline and Pseudo-Online BCI Models to Detect Pedaling Intent
The aim of this work was to design a personalized BCI model to detect pedaling intention through EEG signals. The approach sought to select the best among many possible BCI models for each subject. The choice was between different processing windows, feature extraction algorithms and electrode confi...
Autores principales: | Rodríguez-Ugarte, Marisol, Iáñez, Eduardo, Ortíz, Mario, Azorín, Jose M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504298/ https://www.ncbi.nlm.nih.gov/pubmed/28744212 http://dx.doi.org/10.3389/fninf.2017.00045 |
Ejemplares similares
-
Effects of tDCS on Real-Time BCI Detection of Pedaling Motor Imagery
por: Rodriguez-Ugarte, Maria de la Soledad, et al.
Publicado: (2018) -
Improving Real-Time Lower Limb Motor Imagery Detection Using tDCS and an Exoskeleton
por: Rodríguez-Ugarte, Marisol, et al.
Publicado: (2018) -
Application of the Stockwell Transform to Electroencephalographic Signal Analysis during Gait Cycle
por: Ortiz, Mario, et al.
Publicado: (2017) -
Pseudo-Online BMI Based on EEG to Detect the Appearance of Sudden Obstacles during Walking
por: Elvira, María, et al.
Publicado: (2019) -
Low Intensity Focused tDCS Over the Motor Cortex Shows Inefficacy to Improve Motor Imagery Performance
por: Angulo-Sherman, Irma N., et al.
Publicado: (2017)