Cargando…

MiR‐375/SLC7A11 axis regulates oral squamous cell carcinoma proliferation and invasion

We aimed to detect the functions of miR‐375/SLC7A11 axis on oral squamous cell carcinoma (OSCC) cell proliferation and invasion. Expression levels of miR‐375 and SLC7A11 in OSCC tissues and cells were measured with RT‐qPCR and western blot. Targeting site was predicted by TargetScan and confirmed by...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yadong, Sun, Xiangjie, Song, Bin, Qiu, Xiaoling, Zhao, Jianjiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504333/
https://www.ncbi.nlm.nih.gov/pubmed/28627030
http://dx.doi.org/10.1002/cam4.1110
_version_ 1783249270181199872
author Wu, Yadong
Sun, Xiangjie
Song, Bin
Qiu, Xiaoling
Zhao, Jianjiang
author_facet Wu, Yadong
Sun, Xiangjie
Song, Bin
Qiu, Xiaoling
Zhao, Jianjiang
author_sort Wu, Yadong
collection PubMed
description We aimed to detect the functions of miR‐375/SLC7A11 axis on oral squamous cell carcinoma (OSCC) cell proliferation and invasion. Expression levels of miR‐375 and SLC7A11 in OSCC tissues and cells were measured with RT‐qPCR and western blot. Targeting site was predicted by TargetScan and confirmed by dual luciferase reporting assay. By way of manipulating the expression level of miR‐375 and SLC7A11 in CAL‐27 and Tca8113 cell lines, the cell biological abilities were evaluated. MTT, colony formation, Transwell, wound healing assays and flow cytometry were used to detect OSCC cell viability, proliferation, invasion, migration and apoptosis, respectively. MiR‐375 was significantly downregulated in OSCC tissues and cells compared to adjacent tissue and normal oral cell line respectively while SLC7A11 was upregulated. Targeting relationship was verified by luciferase reporting assay, and miR‐375 could effectively suppress SLC7A11 level in OSCC cells. Replenishing of miR‐375 significantly repressed OSCC cell viability, proliferation, invasion and migration and induced cell apoptosis and G1/G0 arrest. Overexpression of SLC7A11 recovered those biological abilities in miR‐375 upregulated cells. Collective data suggested that miR‐375 served as a tumor suppressor via regulating SLC7A11. Replenishing of miR‐375 or knockout of SLC7A11 could be therapeutically exploited.
format Online
Article
Text
id pubmed-5504333
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-55043332017-07-12 MiR‐375/SLC7A11 axis regulates oral squamous cell carcinoma proliferation and invasion Wu, Yadong Sun, Xiangjie Song, Bin Qiu, Xiaoling Zhao, Jianjiang Cancer Med Cancer Biology We aimed to detect the functions of miR‐375/SLC7A11 axis on oral squamous cell carcinoma (OSCC) cell proliferation and invasion. Expression levels of miR‐375 and SLC7A11 in OSCC tissues and cells were measured with RT‐qPCR and western blot. Targeting site was predicted by TargetScan and confirmed by dual luciferase reporting assay. By way of manipulating the expression level of miR‐375 and SLC7A11 in CAL‐27 and Tca8113 cell lines, the cell biological abilities were evaluated. MTT, colony formation, Transwell, wound healing assays and flow cytometry were used to detect OSCC cell viability, proliferation, invasion, migration and apoptosis, respectively. MiR‐375 was significantly downregulated in OSCC tissues and cells compared to adjacent tissue and normal oral cell line respectively while SLC7A11 was upregulated. Targeting relationship was verified by luciferase reporting assay, and miR‐375 could effectively suppress SLC7A11 level in OSCC cells. Replenishing of miR‐375 significantly repressed OSCC cell viability, proliferation, invasion and migration and induced cell apoptosis and G1/G0 arrest. Overexpression of SLC7A11 recovered those biological abilities in miR‐375 upregulated cells. Collective data suggested that miR‐375 served as a tumor suppressor via regulating SLC7A11. Replenishing of miR‐375 or knockout of SLC7A11 could be therapeutically exploited. John Wiley and Sons Inc. 2017-06-19 /pmc/articles/PMC5504333/ /pubmed/28627030 http://dx.doi.org/10.1002/cam4.1110 Text en © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Cancer Biology
Wu, Yadong
Sun, Xiangjie
Song, Bin
Qiu, Xiaoling
Zhao, Jianjiang
MiR‐375/SLC7A11 axis regulates oral squamous cell carcinoma proliferation and invasion
title MiR‐375/SLC7A11 axis regulates oral squamous cell carcinoma proliferation and invasion
title_full MiR‐375/SLC7A11 axis regulates oral squamous cell carcinoma proliferation and invasion
title_fullStr MiR‐375/SLC7A11 axis regulates oral squamous cell carcinoma proliferation and invasion
title_full_unstemmed MiR‐375/SLC7A11 axis regulates oral squamous cell carcinoma proliferation and invasion
title_short MiR‐375/SLC7A11 axis regulates oral squamous cell carcinoma proliferation and invasion
title_sort mir‐375/slc7a11 axis regulates oral squamous cell carcinoma proliferation and invasion
topic Cancer Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504333/
https://www.ncbi.nlm.nih.gov/pubmed/28627030
http://dx.doi.org/10.1002/cam4.1110
work_keys_str_mv AT wuyadong mir375slc7a11axisregulatesoralsquamouscellcarcinomaproliferationandinvasion
AT sunxiangjie mir375slc7a11axisregulatesoralsquamouscellcarcinomaproliferationandinvasion
AT songbin mir375slc7a11axisregulatesoralsquamouscellcarcinomaproliferationandinvasion
AT qiuxiaoling mir375slc7a11axisregulatesoralsquamouscellcarcinomaproliferationandinvasion
AT zhaojianjiang mir375slc7a11axisregulatesoralsquamouscellcarcinomaproliferationandinvasion