Cargando…

Development of a Method to Extract and Amplify the Complete Mitogenome of Some Sparidae Species

Previous studies showed that fish mitochondrial DNA (mtDNA) is set up by a closed circular molecule of 16-17 kilobases (kb), comprising 2 ribosomal RNA genes (rRNA), 22 transfer RNA genes (tRNA), 13 protein-coding genes and 2 non-coding regions. The analysis of single mtDNA genes, such as Cytb, COI,...

Descripción completa

Detalles Bibliográficos
Autores principales: Mascolo, Celestina, Ceruso, Marina, Sordino, Paolo, Palma, Giuseppe, Anastasio, Aniello, Pepe, Tiziana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PAGEPress Publications, Pavia, Italy 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5505091/
https://www.ncbi.nlm.nih.gov/pubmed/28713786
http://dx.doi.org/10.4081/ijfs.2017.6154
Descripción
Sumario:Previous studies showed that fish mitochondrial DNA (mtDNA) is set up by a closed circular molecule of 16-17 kilobases (kb), comprising 2 ribosomal RNA genes (rRNA), 22 transfer RNA genes (tRNA), 13 protein-coding genes and 2 non-coding regions. The analysis of single mtDNA genes, such as Cytb, COI, 16S and 12S, or short segment of them, has been widely used against species substitution in both fresh and processed fish products. The analysis of the complete mitochondrial genome of fishery products allows to better study and characterise fish species. The aim of this research was to extract and amplify the complete mtDNA of some fish species of commercial interest belonging to the Sparidae family. The studied species were Dentex dentex, Dentex gibbosus, Dentex nufar, Pagellus acarne and Pagellus erythrinus. The entire mitogenome was obtained by gene amplification using long polymerase chain reactions. The analysis of the complete mitochondrial sequences will allow to gain further insights on these species and to find polymorphic sites that assess the degree of genetic variability of the species belonging to the family Sparidae.