Cargando…

Investigating gene flow between the blind cavefish Garra barreimiae and its conspecific surface populations

Cave-dwelling taxa often share the same phenotypic modifications like absence of eyes and pigmentation. These “troglomorphic characters” are expressed in the populations of Garra barreimiae from the Al Hoota Cave and nearby Hoti Pit in Northern Oman. Surface morphotypes of this cyprinid species are...

Descripción completa

Detalles Bibliográficos
Autores principales: Kirchner, Sandra, Sattmann, Helmut, Haring, Elisabeth, Plan, Lukas, Victor, Reginald, Kruckenhauser, Luise
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506003/
https://www.ncbi.nlm.nih.gov/pubmed/28698621
http://dx.doi.org/10.1038/s41598-017-05194-3
Descripción
Sumario:Cave-dwelling taxa often share the same phenotypic modifications like absence of eyes and pigmentation. These “troglomorphic characters” are expressed in the populations of Garra barreimiae from the Al Hoota Cave and nearby Hoti Pit in Northern Oman. Surface morphotypes of this cyprinid species are common throughout the distribution area. Very rarely individuals with intermediate phenotypes can be found. In the present study, potential gene flow between cave and surface populations was tested and population structure within five sampling sites was assessed. Overall, 213 individuals were genotyped at 18 microsatellite loci. We found that the cave populations have lower genetic diversity and are clearly isolated from the surface populations, which seem to be sporadically in contact with each other. The results indicate a recent genetic bottleneck in the cave populations. Thus, it can be assumed that during climatic changes the connection between cave and surface water bodies was disjoined, leaving a subpopulation trapped inside. Nevertheless, occasional gene flow between the morphotypes is detectable, but hybridisation seems only possible in cave habitat with permanent connection to surface water. Individuals from surface sites bearing intermediate phenotypes but cave genotypes imply that phenotypic plasticity might play a role in the development of the phenotype.