Cargando…
Comparing sequencing assays and human-machine analyses in actionable genomics for glioblastoma
OBJECTIVE: To analyze a glioblastoma tumor specimen with 3 different platforms and compare potentially actionable calls from each. METHODS: Tumor DNA was analyzed by a commercial targeted panel. In addition, tumor-normal DNA was analyzed by whole-genome sequencing (WGS) and tumor RNA was analyzed by...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506390/ https://www.ncbi.nlm.nih.gov/pubmed/28740869 http://dx.doi.org/10.1212/NXG.0000000000000164 |
Sumario: | OBJECTIVE: To analyze a glioblastoma tumor specimen with 3 different platforms and compare potentially actionable calls from each. METHODS: Tumor DNA was analyzed by a commercial targeted panel. In addition, tumor-normal DNA was analyzed by whole-genome sequencing (WGS) and tumor RNA was analyzed by RNA sequencing (RNA-seq). The WGS and RNA-seq data were analyzed by a team of bioinformaticians and cancer oncologists, and separately by IBM Watson Genomic Analytics (WGA), an automated system for prioritizing somatic variants and identifying drugs. RESULTS: More variants were identified by WGS/RNA analysis than by targeted panels. WGA completed a comparable analysis in a fraction of the time required by the human analysts. CONCLUSIONS: The development of an effective human-machine interface in the analysis of deep cancer genomic datasets may provide potentially clinically actionable calls for individual patients in a more timely and efficient manner than currently possible. CLINICALTRIALS.GOV IDENTIFIER: NCT02725684. |
---|