Cargando…

Protein Function Prediction Using Deep Restricted Boltzmann Machines

Accurately annotating biological functions of proteins is one of the key tasks in the postgenome era. Many machine learning based methods have been applied to predict functional annotations of proteins, but this task is rarely solved by deep learning techniques. Deep learning techniques recently hav...

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, Xianchun, Wang, Guijun, Yu, Guoxian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506480/
https://www.ncbi.nlm.nih.gov/pubmed/28744460
http://dx.doi.org/10.1155/2017/1729301
Descripción
Sumario:Accurately annotating biological functions of proteins is one of the key tasks in the postgenome era. Many machine learning based methods have been applied to predict functional annotations of proteins, but this task is rarely solved by deep learning techniques. Deep learning techniques recently have been successfully applied to a wide range of problems, such as video, images, and nature language processing. Inspired by these successful applications, we investigate deep restricted Boltzmann machines (DRBM), a representative deep learning technique, to predict the missing functional annotations of partially annotated proteins. Experimental results on Homo sapiens, Saccharomyces cerevisiae, Mus musculus, and Drosophila show that DRBM achieves better performance than other related methods across different evaluation metrics, and it also runs faster than these comparing methods.