Cargando…

valr: Reproducible genome interval analysis in R

New tools for reproducible exploratory data analysis of large datasets are important to address the rising size and complexity of genomic data. We developed the valr R package to enable flexible and efficient genomic interval analysis. valr leverages new tools available in the ”tidyverse”, including...

Descripción completa

Detalles Bibliográficos
Autores principales: Riemondy, Kent A., Sheridan, Ryan M., Gillen, Austin, Yu, Yinni, Bennett, Christopher G., Hesselberth, Jay R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000Research 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506536/
https://www.ncbi.nlm.nih.gov/pubmed/28751969
http://dx.doi.org/10.12688/f1000research.11997.1
_version_ 1783249581898727424
author Riemondy, Kent A.
Sheridan, Ryan M.
Gillen, Austin
Yu, Yinni
Bennett, Christopher G.
Hesselberth, Jay R.
author_facet Riemondy, Kent A.
Sheridan, Ryan M.
Gillen, Austin
Yu, Yinni
Bennett, Christopher G.
Hesselberth, Jay R.
author_sort Riemondy, Kent A.
collection PubMed
description New tools for reproducible exploratory data analysis of large datasets are important to address the rising size and complexity of genomic data. We developed the valr R package to enable flexible and efficient genomic interval analysis. valr leverages new tools available in the ”tidyverse”, including dplyr. Benchmarks of valr show it performs similar to BEDtools and can be used for interactive analyses and incorporated into existing analysis pipelines.
format Online
Article
Text
id pubmed-5506536
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher F1000Research
record_format MEDLINE/PubMed
spelling pubmed-55065362017-07-26 valr: Reproducible genome interval analysis in R Riemondy, Kent A. Sheridan, Ryan M. Gillen, Austin Yu, Yinni Bennett, Christopher G. Hesselberth, Jay R. F1000Res Software Tool Article New tools for reproducible exploratory data analysis of large datasets are important to address the rising size and complexity of genomic data. We developed the valr R package to enable flexible and efficient genomic interval analysis. valr leverages new tools available in the ”tidyverse”, including dplyr. Benchmarks of valr show it performs similar to BEDtools and can be used for interactive analyses and incorporated into existing analysis pipelines. F1000Research 2017-06-29 /pmc/articles/PMC5506536/ /pubmed/28751969 http://dx.doi.org/10.12688/f1000research.11997.1 Text en Copyright: © 2017 Riemondy KA et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Software Tool Article
Riemondy, Kent A.
Sheridan, Ryan M.
Gillen, Austin
Yu, Yinni
Bennett, Christopher G.
Hesselberth, Jay R.
valr: Reproducible genome interval analysis in R
title valr: Reproducible genome interval analysis in R
title_full valr: Reproducible genome interval analysis in R
title_fullStr valr: Reproducible genome interval analysis in R
title_full_unstemmed valr: Reproducible genome interval analysis in R
title_short valr: Reproducible genome interval analysis in R
title_sort valr: reproducible genome interval analysis in r
topic Software Tool Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506536/
https://www.ncbi.nlm.nih.gov/pubmed/28751969
http://dx.doi.org/10.12688/f1000research.11997.1
work_keys_str_mv AT riemondykenta valrreproduciblegenomeintervalanalysisinr
AT sheridanryanm valrreproduciblegenomeintervalanalysisinr
AT gillenaustin valrreproduciblegenomeintervalanalysisinr
AT yuyinni valrreproduciblegenomeintervalanalysisinr
AT bennettchristopherg valrreproduciblegenomeintervalanalysisinr
AT hesselberthjayr valrreproduciblegenomeintervalanalysisinr