Cargando…
Combining Multiple Resting-State fMRI Features during Classification: Optimized Frameworks and Their Application to Nicotine Addiction
Machine learning techniques have been applied to resting-state fMRI data to predict neurological or neuropsychiatric disease states. Existing studies have used either a single type of resting-state feature or a few feature types (<4) in the prediction model. However, resting-state data can be pro...
Autores principales: | Ding, Xiaoyu, Yang, Yihong, Stein, Elliot A., Ross, Thomas J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506584/ https://www.ncbi.nlm.nih.gov/pubmed/28747877 http://dx.doi.org/10.3389/fnhum.2017.00362 |
Ejemplares similares
-
Regional Homogeneity Changes in Nicotine Addicts by Resting-State fMRI
por: Chen, Hongbo, et al.
Publicado: (2017) -
Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM
por: Wang, Yanlu, et al.
Publicado: (2015) -
Editorial: Temporal Features in Resting State fMRI Data
por: Zhang, Nanyin, et al.
Publicado: (2020) -
High Classification Accuracy for Schizophrenia with Rest and Task fMRI Data
por: Du, Wei, et al.
Publicado: (2012) -
Network Connectivity in Epilepsy: Resting State fMRI and EEG–fMRI Contributions
por: Centeno, Maria, et al.
Publicado: (2014)