Cargando…
Leveraging machine learning-based approaches to assess human papillomavirus vaccination sentiment trends with Twitter data
BACKGROUND: As one of the serious public health issues, vaccination refusal has been attracting more and more attention, especially for newly approved human papillomavirus (HPV) vaccines. Understanding public opinion towards HPV vaccines, especially concerns on social media, is of significant import...
Autores principales: | Du, Jingcheng, Xu, Jun, Song, Hsing-Yi, Tao, Cui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506590/ https://www.ncbi.nlm.nih.gov/pubmed/28699569 http://dx.doi.org/10.1186/s12911-017-0469-6 |
Ejemplares similares
-
Optimization on machine learning based approaches for sentiment analysis on HPV vaccines related tweets
por: Du, Jingcheng, et al.
Publicado: (2017) -
Using a Machine Learning Approach to Monitor COVID-19 Vaccine Adverse Events (VAE) from Twitter Data
por: Lian, Andrew T., et al.
Publicado: (2022) -
Sentiment analysis using Twitter data: a comparative application of lexicon- and machine-learning-based approach
por: Qi, Yuxing, et al.
Publicado: (2023) -
Leveraging deep learning to understand health beliefs about the Human Papillomavirus Vaccine from social media
por: Du, Jingcheng, et al.
Publicado: (2019) -
Global Sentiments Surrounding the COVID-19 Pandemic on Twitter: Analysis of Twitter Trends
por: Lwin, May Oo, et al.
Publicado: (2020)