Cargando…
Entity recognition from clinical texts via recurrent neural network
BACKGROUND: Entity recognition is one of the most primary steps for text analysis and has long attracted considerable attention from researchers. In the clinical domain, various types of entities, such as clinical entities and protected health information (PHI), widely exist in clinical texts. Recog...
Autores principales: | Liu, Zengjian, Yang, Ming, Wang, Xiaolong, Chen, Qingcai, Tang, Buzhou, Wang, Zhe, Xu, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506598/ https://www.ncbi.nlm.nih.gov/pubmed/28699566 http://dx.doi.org/10.1186/s12911-017-0468-7 |
Ejemplares similares
-
Temporal indexing of medical entity in Chinese clinical notes
por: Liu, Zengjian, et al.
Publicado: (2019) -
Entity recognition in Chinese clinical text using attention-based CNN-LSTM-CRF
por: Tang, Buzhou, et al.
Publicado: (2019) -
Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks
por: Tang, Buzhou, et al.
Publicado: (2014) -
Chemical-induced disease extraction via recurrent piecewise convolutional neural networks
por: Li, Haodi, et al.
Publicado: (2018) -
Improving deep learning method for biomedical named entity recognition by using entity definition information
por: Xiong, Ying, et al.
Publicado: (2021)