Cargando…

The influence of rapamycin on the early cardioprotective effect of hypoxic preconditioning on cardiomyocytes

INTRODUCTION: The purpose of this study was to examine the effects of rapamycin on the cardioprotective effect of hypoxic preconditioning (HPC) and on the mammalian target of rapamycin (mTOR)-mediated hypoxia-inducible factor 1 (HIF-1) signaling pathway. MATERIAL AND METHODS: Primary cardiomyocytes...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jiang, Maimaitili, YiLiyaer, Zheng, Hong, Yu, Jin, Guo, Hai, Ma, Hai-Ping, Chen, Chun-ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Termedia Publishing House 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5507107/
https://www.ncbi.nlm.nih.gov/pubmed/28721162
http://dx.doi.org/10.5114/aoms.2016.59712
Descripción
Sumario:INTRODUCTION: The purpose of this study was to examine the effects of rapamycin on the cardioprotective effect of hypoxic preconditioning (HPC) and on the mammalian target of rapamycin (mTOR)-mediated hypoxia-inducible factor 1 (HIF-1) signaling pathway. MATERIAL AND METHODS: Primary cardiomyocytes were isolated from rat pups and underwent rapamycin and/or HPC, followed by hypoxia/re-oxygenation (H/R) injury. Cell viability and cell injury were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, and qRT-PCR was used to measure HIF-1α and mTOR mRNA expression. A Langendorff heart perfusion model was conducted to observe the effect of rapamycin. RESULTS: Rapamycin treatment nearly abolished the cardioprotective effect of HPC in cardiomyocytes, reduced cell viability (p = 0.007) and increased cell damage (p = 0.032). HIF-1α and mTOR mRNA expression increased in cardiomyocytes undergoing I/R injury within 2 h after HPC. After rapamycin treatment, mTOR mRNA expression and HPC-induced HIF-1α mRNA expression were both reduced (p < 0.001). A Langendorff heart perfusion model in rat hearts showed that rapamycin greatly attenuated the cardioprotective effect of HPC in terms of heart rate, LVDP, and dp/dtmax (all, p < 0.029). CONCLUSIONS: Rapamycin, through inhibition of mTOR, reduces the elevated HIF-1α expression at an early stage of HPC, and attenuates the early cardioprotective effect of HPC.