Cargando…

Leptospira diversity in animals and humans in Tahiti, French Polynesia

BACKGROUND: Leptospirosis is a highly endemic bacterial zoonosis in French Polynesia (FP). Nevertheless, data on the epidemiology of leptospirosis in FP are scarce. We conducted molecular studies on Leptospira isolated from humans and the potential main animal reservoirs in order to identify the mos...

Descripción completa

Detalles Bibliográficos
Autores principales: Guernier, Vanina, Richard, Vaea, Nhan, Tuxuan, Rouault, Eline, Tessier, Anita, Musso, Didier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5507467/
https://www.ncbi.nlm.nih.gov/pubmed/28658269
http://dx.doi.org/10.1371/journal.pntd.0005676
Descripción
Sumario:BACKGROUND: Leptospirosis is a highly endemic bacterial zoonosis in French Polynesia (FP). Nevertheless, data on the epidemiology of leptospirosis in FP are scarce. We conducted molecular studies on Leptospira isolated from humans and the potential main animal reservoirs in order to identify the most likely sources for human infection. METHODOLOGY/PRINCIPAL FINDINGS: Wild rats (n = 113), farm pigs (n = 181) and domestic dogs (n = 4) were screened for Leptospira infection in Tahiti, the most populated island in FP. Positive samples were genotyped and compared to Leptospira isolated from human cases throughout FP (n = 51), using secY, 16S and LipL32 sequencing, and MLST analysis. Leptospira DNA was detected in 20.4% of rats and 26.5% of pigs. We identified two Leptospira species and three sequence types (STs) in animals and humans: Leptospira interrogans ST140 in pigs only and L. interrogans ST17 and Leptospira borgpetersenii ST149 in humans and rats. Overall, L. interrogans was the dominant species and grouped into four clades: one clade including a human case only, two clades including human cases and dogs, and one clade including human cases and rats. All except one pig sample showed a unique L. interrogans (secY) genotype distinct from those isolated from humans, rats and dogs. Moreover, LipL32 sequencing allowed the detection of an additional Leptospira genotype in pigs, clearly distinct from the previous ones. CONCLUSIONS/SIGNIFICANCE: Our data confirm rats as a major potential source for human leptospirosis in FP. By contrast to what was expected, farm pigs did not seem to be a major reservoir for the Leptospira genotypes identified in human patients. Thus, further investigations will be required to determine their significance in leptospirosis transmission in FP.