Cargando…

Genome-scale analysis of the genes that contribute to Burkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster

Burkholderia pseudomallei, the causative agent of melioidosis, is an important public health threat due to limited therapeutic options for treatment. Efforts to improve therapeutics for B. pseudomallei infections are dependent on the need to understand the role of B. pseudomallei biofilm formation a...

Descripción completa

Detalles Bibliográficos
Autores principales: Borlee, Grace I., Plumley, Brooke A., Martin, Kevin H., Somprasong, Nawarat, Mangalea, Mihnea R., Islam, M. Nurul, Burtnick, Mary N., Brett, Paul J., Steinmetz, Ivo, AuCoin, David P., Belisle, John T., Crick, Dean C., Schweizer, Herbert P., Borlee, Bradley R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5507470/
https://www.ncbi.nlm.nih.gov/pubmed/28658258
http://dx.doi.org/10.1371/journal.pntd.0005689
_version_ 1783249740019793920
author Borlee, Grace I.
Plumley, Brooke A.
Martin, Kevin H.
Somprasong, Nawarat
Mangalea, Mihnea R.
Islam, M. Nurul
Burtnick, Mary N.
Brett, Paul J.
Steinmetz, Ivo
AuCoin, David P.
Belisle, John T.
Crick, Dean C.
Schweizer, Herbert P.
Borlee, Bradley R.
author_facet Borlee, Grace I.
Plumley, Brooke A.
Martin, Kevin H.
Somprasong, Nawarat
Mangalea, Mihnea R.
Islam, M. Nurul
Burtnick, Mary N.
Brett, Paul J.
Steinmetz, Ivo
AuCoin, David P.
Belisle, John T.
Crick, Dean C.
Schweizer, Herbert P.
Borlee, Bradley R.
author_sort Borlee, Grace I.
collection PubMed
description Burkholderia pseudomallei, the causative agent of melioidosis, is an important public health threat due to limited therapeutic options for treatment. Efforts to improve therapeutics for B. pseudomallei infections are dependent on the need to understand the role of B. pseudomallei biofilm formation and its contribution to antibiotic tolerance and persistence as these are bacterial traits that prevent effective therapy. In order to reveal the genes that regulate and/or contribute to B. pseudomallei 1026b biofilm formation, we screened a sequence defined two-allele transposon library and identified 118 transposon insertion mutants that were deficient in biofilm formation. These mutants include transposon insertions in genes predicted to encode flagella, fimbriae, transcriptional regulators, polysaccharides, and hypothetical proteins. Polysaccharides are key constituents of biofilms and B. pseudomallei has the capacity to produce a diversity of polysaccharides, thus there is a critical need to link these biosynthetic genes with the polysaccharides they produce to better understand their biological role during infection. An allelic exchange deletion mutant of the entire B. pseudomallei biofilm-associated exopolysaccharide biosynthetic cluster was decreased in biofilm formation and produced a smooth colony morphology suggestive of the loss of exopolysaccharide production. Conversely, deletion of the previously defined capsule I polysaccharide biosynthesis gene cluster increased biofilm formation. Bioinformatics analyses combined with immunoblot analysis and glycosyl composition studies of the partially purified exopolysaccharide indicate that the biofilm-associated exopolysaccharide is neither cepacian nor the previously described acidic exopolysaccharide. The biofilm-associated exopolysaccharide described here is also specific to the B. pseudomallei complex of bacteria. Since this novel exopolysaccharide biosynthesis cluster is retained in B. mallei, it is predicted to have a role in colonization and infection of the host. These findings will facilitate further advances in understanding the pathogenesis of B. pseudomallei and improve diagnostics and therapeutic treatment strategies.
format Online
Article
Text
id pubmed-5507470
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-55074702017-07-25 Genome-scale analysis of the genes that contribute to Burkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster Borlee, Grace I. Plumley, Brooke A. Martin, Kevin H. Somprasong, Nawarat Mangalea, Mihnea R. Islam, M. Nurul Burtnick, Mary N. Brett, Paul J. Steinmetz, Ivo AuCoin, David P. Belisle, John T. Crick, Dean C. Schweizer, Herbert P. Borlee, Bradley R. PLoS Negl Trop Dis Research Article Burkholderia pseudomallei, the causative agent of melioidosis, is an important public health threat due to limited therapeutic options for treatment. Efforts to improve therapeutics for B. pseudomallei infections are dependent on the need to understand the role of B. pseudomallei biofilm formation and its contribution to antibiotic tolerance and persistence as these are bacterial traits that prevent effective therapy. In order to reveal the genes that regulate and/or contribute to B. pseudomallei 1026b biofilm formation, we screened a sequence defined two-allele transposon library and identified 118 transposon insertion mutants that were deficient in biofilm formation. These mutants include transposon insertions in genes predicted to encode flagella, fimbriae, transcriptional regulators, polysaccharides, and hypothetical proteins. Polysaccharides are key constituents of biofilms and B. pseudomallei has the capacity to produce a diversity of polysaccharides, thus there is a critical need to link these biosynthetic genes with the polysaccharides they produce to better understand their biological role during infection. An allelic exchange deletion mutant of the entire B. pseudomallei biofilm-associated exopolysaccharide biosynthetic cluster was decreased in biofilm formation and produced a smooth colony morphology suggestive of the loss of exopolysaccharide production. Conversely, deletion of the previously defined capsule I polysaccharide biosynthesis gene cluster increased biofilm formation. Bioinformatics analyses combined with immunoblot analysis and glycosyl composition studies of the partially purified exopolysaccharide indicate that the biofilm-associated exopolysaccharide is neither cepacian nor the previously described acidic exopolysaccharide. The biofilm-associated exopolysaccharide described here is also specific to the B. pseudomallei complex of bacteria. Since this novel exopolysaccharide biosynthesis cluster is retained in B. mallei, it is predicted to have a role in colonization and infection of the host. These findings will facilitate further advances in understanding the pathogenesis of B. pseudomallei and improve diagnostics and therapeutic treatment strategies. Public Library of Science 2017-06-28 /pmc/articles/PMC5507470/ /pubmed/28658258 http://dx.doi.org/10.1371/journal.pntd.0005689 Text en © 2017 Borlee et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Borlee, Grace I.
Plumley, Brooke A.
Martin, Kevin H.
Somprasong, Nawarat
Mangalea, Mihnea R.
Islam, M. Nurul
Burtnick, Mary N.
Brett, Paul J.
Steinmetz, Ivo
AuCoin, David P.
Belisle, John T.
Crick, Dean C.
Schweizer, Herbert P.
Borlee, Bradley R.
Genome-scale analysis of the genes that contribute to Burkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster
title Genome-scale analysis of the genes that contribute to Burkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster
title_full Genome-scale analysis of the genes that contribute to Burkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster
title_fullStr Genome-scale analysis of the genes that contribute to Burkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster
title_full_unstemmed Genome-scale analysis of the genes that contribute to Burkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster
title_short Genome-scale analysis of the genes that contribute to Burkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster
title_sort genome-scale analysis of the genes that contribute to burkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5507470/
https://www.ncbi.nlm.nih.gov/pubmed/28658258
http://dx.doi.org/10.1371/journal.pntd.0005689
work_keys_str_mv AT borleegracei genomescaleanalysisofthegenesthatcontributetoburkholderiapseudomalleibiofilmformationidentifiesacrucialexopolysaccharidebiosynthesisgenecluster
AT plumleybrookea genomescaleanalysisofthegenesthatcontributetoburkholderiapseudomalleibiofilmformationidentifiesacrucialexopolysaccharidebiosynthesisgenecluster
AT martinkevinh genomescaleanalysisofthegenesthatcontributetoburkholderiapseudomalleibiofilmformationidentifiesacrucialexopolysaccharidebiosynthesisgenecluster
AT somprasongnawarat genomescaleanalysisofthegenesthatcontributetoburkholderiapseudomalleibiofilmformationidentifiesacrucialexopolysaccharidebiosynthesisgenecluster
AT mangaleamihnear genomescaleanalysisofthegenesthatcontributetoburkholderiapseudomalleibiofilmformationidentifiesacrucialexopolysaccharidebiosynthesisgenecluster
AT islammnurul genomescaleanalysisofthegenesthatcontributetoburkholderiapseudomalleibiofilmformationidentifiesacrucialexopolysaccharidebiosynthesisgenecluster
AT burtnickmaryn genomescaleanalysisofthegenesthatcontributetoburkholderiapseudomalleibiofilmformationidentifiesacrucialexopolysaccharidebiosynthesisgenecluster
AT brettpaulj genomescaleanalysisofthegenesthatcontributetoburkholderiapseudomalleibiofilmformationidentifiesacrucialexopolysaccharidebiosynthesisgenecluster
AT steinmetzivo genomescaleanalysisofthegenesthatcontributetoburkholderiapseudomalleibiofilmformationidentifiesacrucialexopolysaccharidebiosynthesisgenecluster
AT aucoindavidp genomescaleanalysisofthegenesthatcontributetoburkholderiapseudomalleibiofilmformationidentifiesacrucialexopolysaccharidebiosynthesisgenecluster
AT belislejohnt genomescaleanalysisofthegenesthatcontributetoburkholderiapseudomalleibiofilmformationidentifiesacrucialexopolysaccharidebiosynthesisgenecluster
AT crickdeanc genomescaleanalysisofthegenesthatcontributetoburkholderiapseudomalleibiofilmformationidentifiesacrucialexopolysaccharidebiosynthesisgenecluster
AT schweizerherbertp genomescaleanalysisofthegenesthatcontributetoburkholderiapseudomalleibiofilmformationidentifiesacrucialexopolysaccharidebiosynthesisgenecluster
AT borleebradleyr genomescaleanalysisofthegenesthatcontributetoburkholderiapseudomalleibiofilmformationidentifiesacrucialexopolysaccharidebiosynthesisgenecluster