Cargando…
On a more accurate Hardy-Mulholland-type inequality
By using the way of weight coefficients, the technique of real analysis, and Hermite-Hadamard’s inequality, a more accurate Hardy-Mulholland-type inequality with multi-parameters and a best possible constant factor is given. The equivalent forms, the reverses, the operator expressions and some parti...
Autores principales: | Yang, Bicheng, Chen, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5508048/ https://www.ncbi.nlm.nih.gov/pubmed/28757784 http://dx.doi.org/10.1186/s13660-017-1442-8 |
Ejemplares similares
-
On a new discrete Mulholland-type inequality in the whole plane
por: Yang, Bicheng, et al.
Publicado: (2018) -
A reverse Mulholland-type inequality in the whole plane
por: Liao, Jianquan, et al.
Publicado: (2018) -
On a reverse Mulholland’s inequality in the whole plane
por: Wang, Aizhen, et al.
Publicado: (2018) -
A more accurate half-discrete Hardy-Hilbert-type inequality with the logarithmic function
por: Wang, Aizhen, et al.
Publicado: (2017) -
On a more accurate half-discrete Hardy–Hilbert-type inequality related to the kernel of arc tangent function
por: Chen, Qiang, et al.
Publicado: (2016)