Cargando…

Biofilm sensitivity of seven Streptococcus mutans strains to different fluoride levels

The effect of fluoride concentrations in dental products could be different depending on the Streptococcus mutans strain. The aim of this study was to investigate the effect of different fluoride concentrations corresponding to dental products on biofilm formation and metabolic activity of S. mutans...

Descripción completa

Detalles Bibliográficos
Autores principales: Nassar, Hani M., Gregory, Richard L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5508399/
https://www.ncbi.nlm.nih.gov/pubmed/28748032
http://dx.doi.org/10.1080/20002297.2017.1328265
Descripción
Sumario:The effect of fluoride concentrations in dental products could be different depending on the Streptococcus mutans strain. The aim of this study was to investigate the effect of different fluoride concentrations corresponding to dental products on biofilm formation and metabolic activity of S. mutans strains. Seven S. mutans strains (UA159, A32-2, NG8, 10449, UA130, LM7, and OMZ175) were inoculated into 96-well microtiter plates and were tested with various concentrations of sodium fluoride (0.0, 1.0, 1.56, 3.13, 6.25, 12.5, 25, 50, 100, 125, 175, 225, 275, 625, 1,250, 2,250, and 5,500 ppm) for inhibition of biofilm formation and bacterial metabolic activity by recording absorbance values followed by scanning electron microscope (SEM) images. Data were analyzed by one-way analysis of variance and Tukey’s tests (α = 5%). Significantly more (p≤0.05) biofilm mass in the presence of fluoride was produced by A32-2 and NG8. UA130, LM7, and OMZ175 were more sensitive to increased fluoride and demonstrated few bacterial cells and extracellular polysaccharide (EPS) production at 100 ppm in SEM images. All strains were unable to produce significant biofilm at concentrations >225 ppm. Patients with tolerantS. mutans strains would potentially benefit less from the inherent antibacterial effect of fluoride.