Cargando…
Impact of automated ICA-based denoising of fMRI data in acute stroke patients
Different strategies have been developed using Independent Component Analysis (ICA) to automatically de-noise fMRI data, either focusing on removing only certain components (e.g. motion-ICA-AROMA, Pruim et al., 2015a) or using more complex classifiers to remove multiple types of noise components (e....
Autores principales: | Carone, D., Licenik, R., Suri, S., Griffanti, L., Filippini, N., Kennedy, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5508492/ https://www.ncbi.nlm.nih.gov/pubmed/28736698 http://dx.doi.org/10.1016/j.nicl.2017.06.033 |
Ejemplares similares
-
Hand classification of fMRI ICA noise components
por: Griffanti, Ludovica, et al.
Publicado: (2017) -
ICA-based denoising for ASL perfusion imaging
por: Carone, D., et al.
Publicado: (2019) -
NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders
por: Du, Yuhui, et al.
Publicado: (2020) -
Denoising task-correlated head motion from motor-task fMRI data with multi-echo ICA
por: Reddy, Neha A., et al.
Publicado: (2023) -
ICA-fNORM: Spatial Normalization of fMRI Data Using Intrinsic Group-ICA Networks
por: Khullar, Siddharth, et al.
Publicado: (2011)