Cargando…
Generation of an artificial human B cell line test system using Transpo-mAb(TM) technology to evaluate the therapeutic efficacy of novel antigen-specific fusion proteins
The antigen-specific targeting of autoreactive B cells via their unique B cell receptors (BCRs) is a novel and promising alternative to the systemic suppression of humoral immunity. We generated and characterized cytolytic fusion proteins based on an existing immunotoxin comprising tetanus toxoid fr...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509223/ https://www.ncbi.nlm.nih.gov/pubmed/28704435 http://dx.doi.org/10.1371/journal.pone.0180305 |
Sumario: | The antigen-specific targeting of autoreactive B cells via their unique B cell receptors (BCRs) is a novel and promising alternative to the systemic suppression of humoral immunity. We generated and characterized cytolytic fusion proteins based on an existing immunotoxin comprising tetanus toxoid fragment C (TTC) as the targeting component and the modified Pseudomonas aeruginosa exotoxin A (ETA') as the cytotoxic component. The immunotoxin was reconfigured to replace ETA' with either the granzyme B mutant R201K or MAPTau as human effector domains. The novel cytolytic fusion proteins were characterized with a recombinant human lymphocytic cell line developed using Transpo-mAb™ technology. Genes encoding a chimeric TTC-reactive immunoglobulin G were successfully integrated into the genome of the precursor B cell line REH so that the cells could present TTC-reactive BCRs on their surface. These cells were used to investigate the specific cytotoxicity of GrB(R201K)-TTC and TTC-MAPTau, revealing that the serpin proteinase inhibitor 9-resistant granzyme B R201K mutant induced apoptosis specifically in the lymphocytic cell line. Our data confirm that antigen-based fusion proteins containing granzyme B (R201K) are suitable candidates for the depletion of autoreactive B cells. |
---|