Cargando…
HIV-1 Tat potently stabilises Mdm2 and enhances viral replication
Murine double minute 2 (Mdm2) is known to enhance the transactivation potential of human immunodeficiency virus (HIV-1) Tat protein by causing its ubiquitination. However, the regulation of Mdm2 during HIV-1 infection and its implications for viral replication have not been well studied. Here, we sh...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509382/ https://www.ncbi.nlm.nih.gov/pubmed/28468838 http://dx.doi.org/10.1042/BCJ20160825 |
Sumario: | Murine double minute 2 (Mdm2) is known to enhance the transactivation potential of human immunodeficiency virus (HIV-1) Tat protein by causing its ubiquitination. However, the regulation of Mdm2 during HIV-1 infection and its implications for viral replication have not been well studied. Here, we show that the Mdm2 protein level increases during HIV-1 infection and this effect is mediated by HIV-1 Tat protein. Tat appears to stabilise Mdm2 at the post-translational level by inducing its phosphorylation at serine-166 position through AKT. Although p53 is one of the key players for Mdm2 induction, Tat-mediated stabilisation of Mdm2 appears to be independent of p53. Moreover, the non-phosphorylatable mutant of Mdm2 (S166A) fails to interact with Tat and shows decreased half-life in the presence of Tat compared with wild-type Mdm2. Furthermore, the non-phosphorylatable mutant of Mdm2 (S166A) is unable to support HIV-1 replication. Thus, HIV-1 Tat appears to stabilise Mdm2, which in turn enhances Tat-mediated viral replication. This study highlights the importance of post-translational modifications of host cellular factors in HIV-1 replication and pathogenesis. |
---|