Cargando…
Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
Multiparametric Magnetic Resonance Imaging (MRI) can provide detailed information of the physical characteristics of rectum tumours. Several investigations suggest that volumetric analyses on anatomical and functional MRI contain clinically valuable information. However, manual delineation of tumour...
Autores principales: | Trebeschi, Stefano, van Griethuysen, Joost J. M., Lambregts, Doenja M. J., Lahaye, Max J., Parmar, Chintan, Bakers, Frans C. H., Peters, Nicky H. G. M., Beets-Tan, Regina G. H., Aerts, Hugo J. W. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509680/ https://www.ncbi.nlm.nih.gov/pubmed/28706185 http://dx.doi.org/10.1038/s41598-017-05728-9 |
Ejemplares similares
-
Author Correction: Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
por: Trebeschi, Stefano, et al.
Publicado: (2018) -
Development and multicenter validation of a multiparametric imaging model to predict treatment response in rectal cancer
por: Schurink, Niels W., et al.
Publicado: (2023) -
Measuring the apparent diffusion coefficient in primary rectal tumors: is there a benefit in performing histogram analyses?
por: van Heeswijk, Miriam M., et al.
Publicado: (2017) -
A decade of multi-modality PET and MR imaging in abdominal oncology
por: Min, Lisa A., et al.
Publicado: (2021) -
Response evaluation after neoadjuvant treatment for rectal cancer using modern MR imaging: a pictorial review
por: Lambregts, Doenja M. J., et al.
Publicado: (2019)