Cargando…
Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity
Brain-inspired computation can revolutionize information technology by introducing machines capable of recognizing patterns (images, speech, video) and interacting with the external world in a cognitive, humanlike way. Achieving this goal requires first to gain a detailed understanding of the brain...
Autores principales: | Pedretti, G., Milo, V., Ambrogio, S., Carboni, R., Bianchi, S., Calderoni, A., Ramaswamy, N., Spinelli, A. S., Ielmini, D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509735/ https://www.ncbi.nlm.nih.gov/pubmed/28706303 http://dx.doi.org/10.1038/s41598-017-05480-0 |
Ejemplares similares
-
Publisher Correction: Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity
por: Pedretti, G., et al.
Publicado: (2018) -
Computing of temporal information in spiking neural networks with ReRAM synapses
por: Wang, W., et al.
Publicado: (2019) -
Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses
por: Wang, Wei, et al.
Publicado: (2018) -
Plasticity in memristive devices for spiking neural networks
por: Saïghi, Sylvain, et al.
Publicado: (2015) -
Unsupervised Learning by Spike Timing Dependent Plasticity in Phase Change Memory (PCM) Synapses
por: Ambrogio, Stefano, et al.
Publicado: (2016)