Cargando…
Regularization of Ill-Posed Point Neuron Models
Point neuron models with a Heaviside firing rate function can be ill-posed. That is, the initial-condition-to-solution map might become discontinuous in finite time. If a Lipschitz continuous but steep firing rate function is employed, then standard ODE theory implies that such models are well-posed...
Autor principal: | Nielsen, Bjørn Fredrik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509800/ https://www.ncbi.nlm.nih.gov/pubmed/28707194 http://dx.doi.org/10.1186/s13408-017-0049-1 |
Ejemplares similares
-
Ill-Posed Point Neuron Models
por: Nielsen, Bjørn Fredrik, et al.
Publicado: (2016) -
The residual method for regularizing ill-posed problems
por: Grasmair, Markus, et al.
Publicado: (2011) -
Regularization of ill-posed problems by iteration methods
por: Gilyazov, S F, et al.
Publicado: (2000) -
Iterative regularization methods for nonlinear ill-posed problems
por: Scherzer, Otmar, et al.
Publicado: (2008) -
Regularization theory for ill-posed problems: selected topics
por: Lu, Shuai, et al.
Publicado: (2013)