Cargando…
ICAM‐1‐targeted nanocarriers attenuate endothelial release of soluble ICAM‐1, an inflammatory regulator
Targeting of drug nanocarriers (NCs) to intercellular adhesion molecule‐1 (ICAM‐1), an endothelial‐surface protein overexpressed in many pathologies, has shown promise for therapeutic delivery into and across this lining. However, due to the role of ICAM‐1 in inflammation, the effects of targeting t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5510616/ https://www.ncbi.nlm.nih.gov/pubmed/28713860 http://dx.doi.org/10.1002/btm2.10050 |
Sumario: | Targeting of drug nanocarriers (NCs) to intercellular adhesion molecule‐1 (ICAM‐1), an endothelial‐surface protein overexpressed in many pathologies, has shown promise for therapeutic delivery into and across this lining. However, due to the role of ICAM‐1 in inflammation, the effects of targeting this receptor need investigation. Since ICAM‐1 binding by natural ligands (leukocyte integrins) results in release of the “soluble ICAM‐1” ectodomain (sICAM‐1), an inflammatory regulator, we investigated the influence of targeting ICAM‐1 with NCs on this process. For this, sICAM‐1 was measured by ELISA from cell‐medium supernatants, after incubation of endothelial cell (EC) monolayers in the absence versus presence of anti‐ICAM NCs. In the absence of NCs, ECs released sICAM‐1 when treated with a pro‐inflammatory cytokine. This was reduced by inhibiting matrix metalloproteinases MMP‐9 or MMP‐2, yet inhibiting both did not render additive effects. Release of sICAM‐1 mainly occurred at the basolateral versus apical side, and both MMP‐9 and MMP‐2 influenced apical release, while basolateral release depended on MMP‐9. Interestingly, anti‐ICAM NCs reduced sICAM‐1 to a greater extent than MMP inhibition, both at the apical and basolateral sides. This effect was enhanced with time, although NCs had been removed after binding to cells, ruling out a “trapping” effect of NCs. Instead, inhibiting anti‐ICAM NC endocytosis counteracted their inhibition on sICAM‐1 release. Hence, anti‐ICAM NCs inhibited sICAM‐1 release by mobilizing ICAM‐1 from the cell‐surface into intracellular vesicles. Since elevated levels of sICAM‐1 associate with numerous diseases, this effect represents a secondary benefit of using ICAM‐1‐targeted NCs for drug delivery. |
---|