Cargando…

A Conversion of Oral Cannabidiol to Delta9-Tetrahydrocannabinol Seems Not to Occur in Humans

Cannabidiol (CBD), a major cannabinoid of hemp, does not bind to CB1 receptors and is therefore devoid of psychotomimetic properties. Under acidic conditions, CBD can be transformed to delta9-tetrahydrocannabinol (THC) and other cannabinoids. It has been argued that this may occur also after oral ad...

Descripción completa

Detalles Bibliográficos
Autores principales: Nahler, Gerhard, Grotenhermen, Franjo, Zuardi, Antonio Waldo, Crippa, José A.S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mary Ann Liebert, Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5510776/
https://www.ncbi.nlm.nih.gov/pubmed/28861507
http://dx.doi.org/10.1089/can.2017.0009
Descripción
Sumario:Cannabidiol (CBD), a major cannabinoid of hemp, does not bind to CB1 receptors and is therefore devoid of psychotomimetic properties. Under acidic conditions, CBD can be transformed to delta9-tetrahydrocannabinol (THC) and other cannabinoids. It has been argued that this may occur also after oral administration in humans. However, the experimental conversion of CBD to THC and delta8-THC in simulated gastric fluid (SGF) is a highly artificial approach that deviates significantly from physiological conditions in the stomach; therefore, SGF does not allow an extrapolation to in vivo conditions. Unsurprisingly, the conversion of oral CBD to THC and its metabolites has not been observed to occur in vivo, even after high doses of oral CBD. In addition, the typical spectrum of side effects of THC, or of the very similar synthetic cannabinoid nabilone, as listed in the official Summary of Product Characteristics (e.g., dizziness, euphoria/high, thinking abnormal/concentration difficulties, nausea, tachycardia) has not been observed after treatment with CBD in double-blind, randomized, controlled clinical trials. In conclusion, the conversion of CBD to THC in SGF seems to be an in vitro artifact.