Cargando…
Predicting all-cause risk of 30-day hospital readmission using artificial neural networks
Avoidable hospital readmissions not only contribute to the high costs of healthcare in the US, but also have an impact on the quality of care for patients. Large scale adoption of Electronic Health Records (EHR) has created the opportunity to proactively identify patients with high risk of hospital...
Autores principales: | Jamei, Mehdi, Nisnevich, Aleksandr, Wetchler, Everett, Sudat, Sylvia, Liu, Eric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5510858/ https://www.ncbi.nlm.nih.gov/pubmed/28708848 http://dx.doi.org/10.1371/journal.pone.0181173 |
Ejemplares similares
-
Correction: Predicting all-cause risk of 30-day hospital readmission using artificial neural networks
por: Jamei, Mehdi, et al.
Publicado: (2018) -
Neural networks versus Logistic regression for 30 days all-cause readmission prediction
por: Allam, Ahmed, et al.
Publicado: (2019) -
Predicting 30-day hospital readmissions using artificial neural networks with medical code embedding
por: Liu, Wenshuo, et al.
Publicado: (2020) -
Comparison of Back-Propagation Neural Network, LACE Index and HOSPITAL Score in Predicting All-Cause Risk of 30-Day Readmission
por: Lin, Chaohsin, et al.
Publicado: (2021) -
Prediction of 30-Day Hospital Readmissions for All-Cause Dental Conditions using Machine Learning
por: Hung, Man, et al.
Publicado: (2020)