Cargando…
A deep learning framework for financial time series using stacked autoencoders and long-short term memory
The application of deep learning approaches to finance has received a great deal of attention from both investors and researchers. This study presents a novel deep learning framework where wavelet transforms (WT), stacked autoencoders (SAEs) and long-short term memory (LSTM) are combined for stock p...
Autores principales: | Bao, Wei, Yue, Jun, Rao, Yulei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5510866/ https://www.ncbi.nlm.nih.gov/pubmed/28708865 http://dx.doi.org/10.1371/journal.pone.0180944 |
Ejemplares similares
-
Long-Short-Term-Memory-Based Deep Stacked Sequence-to-Sequence Autoencoder for Health Prediction of Industrial Workers in Closed Environments Based on Wearable Devices
por: Xu, Weidong, et al.
Publicado: (2023) -
Fault Detection and Diagnosis Using Combined Autoencoder and Long Short-Term Memory Network
por: Park, Pangun, et al.
Publicado: (2019) -
Unsupervised Pre-training of a Deep LSTM-based Stacked Autoencoder for Multivariate Time Series Forecasting Problems
por: Sagheer, Alaa, et al.
Publicado: (2019) -
Implementation of a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder for Anomaly Detection on Multivariate Timeseries Data of Industrial Blower Ball Bearing Units
por: Karapalidou, Elisavet, et al.
Publicado: (2023) -
Reconstructing aerosol optical depth using spatiotemporal Long Short-Term Memory convolutional autoencoder
por: Liang, Lu, et al.
Publicado: (2023)