Cargando…
Deep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma
Deep learning-based radiomics (DLR) was developed to extract deep information from multiple modalities of magnetic resonance (MR) images. The performance of DLR for predicting the mutation status of isocitrate dehydrogenase 1 (IDH1) was validated in a dataset of 151 patients with low-grade glioma. A...
Autores principales: | Li, Zeju, Wang, Yuanyuan, Yu, Jinhua, Guo, Yi, Cao, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511238/ https://www.ncbi.nlm.nih.gov/pubmed/28710497 http://dx.doi.org/10.1038/s41598-017-05848-2 |
Ejemplares similares
-
IDH mutation-specific radiomic signature in lower-grade gliomas
por: Liu, Xing, et al.
Publicado: (2019) -
Noninvasive Determination of the IDH Status of Gliomas Using MRI and MRI-Based Radiomics: Impact on Diagnosis and Prognosis
por: Li, Yurong, et al.
Publicado: (2022) -
Pro DLR in NET 4
por: Wu, Chaur
Publicado: (2011) -
Low-Grade Glioma Segmentation Based on CNN with Fully Connected CRF
por: Li, Zeju, et al.
Publicado: (2017) -
The Value of Enhanced MR Radiomics in Estimating the IDH1 Genotype in High-Grade Gliomas
por: Niu, Lei, et al.
Publicado: (2020)