Cargando…
Computationally Informed Design of a Multi-Axial Actuated Microfluidic Chip Device
This paper describes the computationally informed design and experimental validation of a microfluidic chip device with multi-axial stretching capabilities. The device, based on PDMS soft-lithography, consisted of a thin porous membrane, mounted between two fluidic compartments, and tensioned via a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511244/ https://www.ncbi.nlm.nih.gov/pubmed/28710359 http://dx.doi.org/10.1038/s41598-017-05237-9 |
Sumario: | This paper describes the computationally informed design and experimental validation of a microfluidic chip device with multi-axial stretching capabilities. The device, based on PDMS soft-lithography, consisted of a thin porous membrane, mounted between two fluidic compartments, and tensioned via a set of vacuum-driven actuators. A finite element analysis solver implementing a set of different nonlinear elastic and hyperelastic material models was used to drive the design and optimization of chip geometry and to investigate the resulting deformation patterns under multi-axial loading. Computational results were cross-validated by experimental testing of prototypal devices featuring the in silico optimized geometry. The proposed methodology represents a suite of computationally handy simulation tools that might find application in the design and in silico mechanical characterization of a wide range of stretchable microfluidic devices. |
---|