Cargando…

Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial

It is desirable to extend the surface-enhanced Raman scattering (SERS) from the conventionally used visible range into the infrared region, because the fluorescence background is lower in the long-wavelength regime. To do this, it is important to have a SERS substrate suitable for infrared operation...

Descripción completa

Detalles Bibliográficos
Autores principales: Lai, Chih-Hsien, Wang, Guo-An, Ling, Tsung-Kai, Wang, Tzyy-Jiann, Chiu, Po-kai, Chou Chau, Yuan-Fong, Huang, Chih-Ching, Chiang, Hai-Pang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511255/
https://www.ncbi.nlm.nih.gov/pubmed/28710494
http://dx.doi.org/10.1038/s41598-017-05939-0
Descripción
Sumario:It is desirable to extend the surface-enhanced Raman scattering (SERS) from the conventionally used visible range into the infrared region, because the fluorescence background is lower in the long-wavelength regime. To do this, it is important to have a SERS substrate suitable for infrared operation. In this work, we report the near infrared SERS operation based on the substrates employing star-shaped gold/silver nanoparticles and hyperbolic metamaterial (HMM) structure. We first fabricate the SERS substrate in which nanoparticles are separated from a silver film by a thin dielectric layer. Performance of the SERS substrate is investigated with a 1064-nm excitation source. Compared with similar silver film-based substrates employing respectively gold and silver spherical nanoparticles, it is found that, Raman intensity scattered by the substrate with star-shaped nanoparticles is 7.4 times stronger than that with gold nanoparticles, and 3.4 times stronger than that with silver nanoparticles. Following this, we fabricate the SERS substrate where the star-shaped nanoparticles are deposited over a HMM structure. The HMM structure comprises three pairs of germanium-silver multilayers. Further experimental result shows that, with the star-shaped nanoparticles, the HMM-based substrate yields 30% higher Raman intensity for near infrared SERS operation than the silver film-based substrate does.