Cargando…
Sexual selection reinforces a higher flight endurance in urban damselflies
Urbanization is among the most important and globally rapidly increasing anthropogenic processes and is known to drive rapid evolution. Habitats in urbanized areas typically consist of small, fragmented and isolated patches, which are expected to select for a better locomotor performance, along with...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511363/ https://www.ncbi.nlm.nih.gov/pubmed/28717389 http://dx.doi.org/10.1111/eva.12485 |
Sumario: | Urbanization is among the most important and globally rapidly increasing anthropogenic processes and is known to drive rapid evolution. Habitats in urbanized areas typically consist of small, fragmented and isolated patches, which are expected to select for a better locomotor performance, along with its underlying morphological traits. This, in turn, is expected to cause differentiation in selection regimes, as populations with different frequency distributions for a given trait will span different parts of the species’ fitness function. Yet, very few studies considered differentiation in phenotypic traits associated with patterns in habitat fragmentation and isolation along urbanization gradients, and none considered differentiation in sexual selection regimes. We investigated differentiation in flight performance and flight‐related traits and sexual selection on these traits across replicated urban and rural populations of the scrambling damselfly Coenagrion puella. To disentangle direct and indirect paths going from phenotypic traits over performance to mating success, we applied a path analysis approach. We report for the first time direct evidence for the expected better locomotor performance in urban compared to rural populations. This matches a scenario of spatial sorting, whereby only the individuals with the best locomotor abilities colonize the isolated urban populations. The covariation patterns and causal relationships among the phenotypic traits, performance and mating success strongly depended on the urbanization level. Notably, we detected sexual selection for a higher flight endurance only in urban populations, indicating that the higher flight performance of urban males was reinforced by sexual selection. Taken together, our results provide a unique proof of the interplay between sexual selection and adaptation to human‐altered environments. |
---|