Cargando…
Optimization of multi-environment trials for genomic selection based on crop models
KEY MESSAGE: We propose a statistical criterion to optimize multi-environment trials to predict genotype × environment interactions more efficiently, by combining crop growth models and genomic selection models. ABSTRACT: Genotype × environment interactions (GEI) are common in plant multi-environmen...
Autores principales: | Rincent, R., Kuhn, E., Monod, H., Oury, F.-X., Rousset, M., Allard, V., Le Gouis, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511605/ https://www.ncbi.nlm.nih.gov/pubmed/28540573 http://dx.doi.org/10.1007/s00122-017-2922-4 |
Ejemplares similares
-
Combining Crop Growth Modeling With Trait-Assisted Prediction Improved the Prediction of Genotype by Environment Interactions
por: Robert, Pauline, et al.
Publicado: (2020) -
Wheat individual grain-size variance originates from crop development and from specific genetic determinism
por: Beral, Aurore, et al.
Publicado: (2020) -
Genomic Selection in Multi-environment Crop Trials
por: Oakey, Helena, et al.
Publicado: (2016) -
Phenomic Selection Is a Low-Cost and High-Throughput Method Based on Indirect Predictions: Proof of Concept on Wheat and Poplar
por: Rincent, Renaud, et al.
Publicado: (2018) -
Predicting genomic selection efficiency to optimize calibration set and to assess prediction accuracy in highly structured populations
por: Rincent, R., et al.
Publicado: (2017)