Cargando…
Enhancing Classification Performance of Functional Near-Infrared Spectroscopy- Brain–Computer Interface Using Adaptive Estimation of General Linear Model Coefficients
In this paper, a novel methodology for enhanced classification of functional near-infrared spectroscopy (fNIRS) signals utilizable in a two-class [motor imagery (MI) and rest; mental rotation (MR) and rest] brain–computer interface (BCI) is presented. First, fNIRS signals corresponding to MI and MR...
Autores principales: | Qureshi, Nauman Khalid, Naseer, Noman, Noori, Farzan Majeed, Nazeer, Hammad, Khan, Rayyan Azam, Saleem, Sajid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5512010/ https://www.ncbi.nlm.nih.gov/pubmed/28769781 http://dx.doi.org/10.3389/fnbot.2017.00033 |
Ejemplares similares
-
fNIRS-based Neurorobotic Interface for gait rehabilitation
por: Khan, Rayyan Azam, et al.
Publicado: (2018) -
Analysis of Different Classification Techniques for Two-Class Functional Near-Infrared Spectroscopy-Based Brain-Computer Interface
por: Naseer, Noman, et al.
Publicado: (2016) -
Determining Optimal Feature-Combination for LDA Classification of Functional Near-Infrared Spectroscopy Signals in Brain-Computer Interface Application
por: Naseer, Noman, et al.
Publicado: (2016) -
Vector Phase Analysis Approach for Sleep Stage Classification: A Functional Near-Infrared Spectroscopy-Based Passive Brain–Computer Interface
por: Arif, Saad, et al.
Publicado: (2021) -
LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI
por: Gulraiz, Asma, et al.
Publicado: (2022)