Cargando…
A DFT Study of Structural and Bonding Properties of Complexes Obtained from First-Row Transition Metal Chelation by 3-Alkyl-4-phenylacetylamino-4,5-dihydro-1H-1,2,4-triazol-5-one and Its Derivatives
Density functional calculations were used to explore the complexation of 3-alkyl-4-phenylacetylamino-4,5-dihydro-1h-1,2,4-triazol-5-one (ADPHT) derivatives by first-row transition metal cations. Neutral ADPHT ligand and mono deprotonated ligands have been used. Geometry optimizations have been perfo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5512031/ https://www.ncbi.nlm.nih.gov/pubmed/28757814 http://dx.doi.org/10.1155/2017/5237865 |
_version_ | 1783250438875774976 |
---|---|
author | Jean Nono, Hubert Bikélé Mama, Désiré Ghogomu, Julius Numbonui Younang, Elie |
author_facet | Jean Nono, Hubert Bikélé Mama, Désiré Ghogomu, Julius Numbonui Younang, Elie |
author_sort | Jean Nono, Hubert |
collection | PubMed |
description | Density functional calculations were used to explore the complexation of 3-alkyl-4-phenylacetylamino-4,5-dihydro-1h-1,2,4-triazol-5-one (ADPHT) derivatives by first-row transition metal cations. Neutral ADPHT ligand and mono deprotonated ligands have been used. Geometry optimizations have been performed in gas-phase and solution-phase (water, benzene, and N,N-dimethylformamide (DMF)) with B3LYP/Mixed I (LanL2DZ for metal atom and 6-31+G(d,p) for C, N, O, and H atoms) and with B3LYP/Mixed II (6-31G(d) for metal atom and 6-31+G(d,p) for C, N, O, and H atoms) especially in the gas-phase. Single points have also been carried out at CCSD(T) level. The B3LYP/Mixed I method was used to calculate thermodynamic energies (energies, enthalpies, and Gibb energies) of the formation of the complexes analyzed. The B3LYP/Mixed I complexation energies in the gas phase are therefore compared to those obtained using B3LYP/Mixed II and CCSD(T) calculations. Our results pointed out that the deprotonation of the ligand increases the binding affinity independently of the metal cation used. The topological parameters yielded from Quantum Theory of Atom in Molecules (QTAIM) indicate that metal-ligand bonds are partly covalent. The significant reduction of the proton affinity (PA) observed when passing from ligands to complexes in gas-phase confirms the notable enhancement of antioxidant activities of neutral ligands. |
format | Online Article Text |
id | pubmed-5512031 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-55120312017-07-30 A DFT Study of Structural and Bonding Properties of Complexes Obtained from First-Row Transition Metal Chelation by 3-Alkyl-4-phenylacetylamino-4,5-dihydro-1H-1,2,4-triazol-5-one and Its Derivatives Jean Nono, Hubert Bikélé Mama, Désiré Ghogomu, Julius Numbonui Younang, Elie Bioinorg Chem Appl Research Article Density functional calculations were used to explore the complexation of 3-alkyl-4-phenylacetylamino-4,5-dihydro-1h-1,2,4-triazol-5-one (ADPHT) derivatives by first-row transition metal cations. Neutral ADPHT ligand and mono deprotonated ligands have been used. Geometry optimizations have been performed in gas-phase and solution-phase (water, benzene, and N,N-dimethylformamide (DMF)) with B3LYP/Mixed I (LanL2DZ for metal atom and 6-31+G(d,p) for C, N, O, and H atoms) and with B3LYP/Mixed II (6-31G(d) for metal atom and 6-31+G(d,p) for C, N, O, and H atoms) especially in the gas-phase. Single points have also been carried out at CCSD(T) level. The B3LYP/Mixed I method was used to calculate thermodynamic energies (energies, enthalpies, and Gibb energies) of the formation of the complexes analyzed. The B3LYP/Mixed I complexation energies in the gas phase are therefore compared to those obtained using B3LYP/Mixed II and CCSD(T) calculations. Our results pointed out that the deprotonation of the ligand increases the binding affinity independently of the metal cation used. The topological parameters yielded from Quantum Theory of Atom in Molecules (QTAIM) indicate that metal-ligand bonds are partly covalent. The significant reduction of the proton affinity (PA) observed when passing from ligands to complexes in gas-phase confirms the notable enhancement of antioxidant activities of neutral ligands. Hindawi 2017 2017-07-03 /pmc/articles/PMC5512031/ /pubmed/28757814 http://dx.doi.org/10.1155/2017/5237865 Text en Copyright © 2017 Hubert Jean Nono et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Jean Nono, Hubert Bikélé Mama, Désiré Ghogomu, Julius Numbonui Younang, Elie A DFT Study of Structural and Bonding Properties of Complexes Obtained from First-Row Transition Metal Chelation by 3-Alkyl-4-phenylacetylamino-4,5-dihydro-1H-1,2,4-triazol-5-one and Its Derivatives |
title | A DFT Study of Structural and Bonding Properties of Complexes Obtained from First-Row Transition Metal Chelation by 3-Alkyl-4-phenylacetylamino-4,5-dihydro-1H-1,2,4-triazol-5-one and Its Derivatives |
title_full | A DFT Study of Structural and Bonding Properties of Complexes Obtained from First-Row Transition Metal Chelation by 3-Alkyl-4-phenylacetylamino-4,5-dihydro-1H-1,2,4-triazol-5-one and Its Derivatives |
title_fullStr | A DFT Study of Structural and Bonding Properties of Complexes Obtained from First-Row Transition Metal Chelation by 3-Alkyl-4-phenylacetylamino-4,5-dihydro-1H-1,2,4-triazol-5-one and Its Derivatives |
title_full_unstemmed | A DFT Study of Structural and Bonding Properties of Complexes Obtained from First-Row Transition Metal Chelation by 3-Alkyl-4-phenylacetylamino-4,5-dihydro-1H-1,2,4-triazol-5-one and Its Derivatives |
title_short | A DFT Study of Structural and Bonding Properties of Complexes Obtained from First-Row Transition Metal Chelation by 3-Alkyl-4-phenylacetylamino-4,5-dihydro-1H-1,2,4-triazol-5-one and Its Derivatives |
title_sort | dft study of structural and bonding properties of complexes obtained from first-row transition metal chelation by 3-alkyl-4-phenylacetylamino-4,5-dihydro-1h-1,2,4-triazol-5-one and its derivatives |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5512031/ https://www.ncbi.nlm.nih.gov/pubmed/28757814 http://dx.doi.org/10.1155/2017/5237865 |
work_keys_str_mv | AT jeannonohubert adftstudyofstructuralandbondingpropertiesofcomplexesobtainedfromfirstrowtransitionmetalchelationby3alkyl4phenylacetylamino45dihydro1h124triazol5oneanditsderivatives AT bikelemamadesire adftstudyofstructuralandbondingpropertiesofcomplexesobtainedfromfirstrowtransitionmetalchelationby3alkyl4phenylacetylamino45dihydro1h124triazol5oneanditsderivatives AT ghogomujuliusnumbonui adftstudyofstructuralandbondingpropertiesofcomplexesobtainedfromfirstrowtransitionmetalchelationby3alkyl4phenylacetylamino45dihydro1h124triazol5oneanditsderivatives AT younangelie adftstudyofstructuralandbondingpropertiesofcomplexesobtainedfromfirstrowtransitionmetalchelationby3alkyl4phenylacetylamino45dihydro1h124triazol5oneanditsderivatives AT jeannonohubert dftstudyofstructuralandbondingpropertiesofcomplexesobtainedfromfirstrowtransitionmetalchelationby3alkyl4phenylacetylamino45dihydro1h124triazol5oneanditsderivatives AT bikelemamadesire dftstudyofstructuralandbondingpropertiesofcomplexesobtainedfromfirstrowtransitionmetalchelationby3alkyl4phenylacetylamino45dihydro1h124triazol5oneanditsderivatives AT ghogomujuliusnumbonui dftstudyofstructuralandbondingpropertiesofcomplexesobtainedfromfirstrowtransitionmetalchelationby3alkyl4phenylacetylamino45dihydro1h124triazol5oneanditsderivatives AT younangelie dftstudyofstructuralandbondingpropertiesofcomplexesobtainedfromfirstrowtransitionmetalchelationby3alkyl4phenylacetylamino45dihydro1h124triazol5oneanditsderivatives |