Cargando…

Computational design of trimeric influenza neutralizing proteins targeting the hemagglutinin receptor binding site

Many viral surface glycoproteins and cell surface receptors are homo-oligomers(1-4), and hence can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally...

Descripción completa

Detalles Bibliográficos
Autores principales: Strauch, EM, Bernard, SM, La, D, Bohn, AJ, Lee, PS, Anderson, CE, Nieusma, T, Holstein, CA, Garcia, NK, Hooper, KA, Ravichandran, R, Nelson, JW, Sheffler, W, Bloom, JD, Lee, KK, Ward, AB, Yager, P, Fuller, DH, Wilson, IA, Baker, D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5512607/
https://www.ncbi.nlm.nih.gov/pubmed/28604661
http://dx.doi.org/10.1038/nbt.3907
_version_ 1783250501209423872
author Strauch, EM
Bernard, SM
La, D
Bohn, AJ
Lee, PS
Anderson, CE
Nieusma, T
Holstein, CA
Garcia, NK
Hooper, KA
Ravichandran, R
Nelson, JW
Sheffler, W
Bloom, JD
Lee, KK
Ward, AB
Yager, P
Fuller, DH
Wilson, IA
Baker, D
author_facet Strauch, EM
Bernard, SM
La, D
Bohn, AJ
Lee, PS
Anderson, CE
Nieusma, T
Holstein, CA
Garcia, NK
Hooper, KA
Ravichandran, R
Nelson, JW
Sheffler, W
Bloom, JD
Lee, KK
Ward, AB
Yager, P
Fuller, DH
Wilson, IA
Baker, D
author_sort Strauch, EM
collection PubMed
description Many viral surface glycoproteins and cell surface receptors are homo-oligomers(1-4), and hence can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites(5-8). In the first step, a small protein is designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We used this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The best characterized of these designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.
format Online
Article
Text
id pubmed-5512607
institution National Center for Biotechnology Information
language English
publishDate 2017
record_format MEDLINE/PubMed
spelling pubmed-55126072017-12-12 Computational design of trimeric influenza neutralizing proteins targeting the hemagglutinin receptor binding site Strauch, EM Bernard, SM La, D Bohn, AJ Lee, PS Anderson, CE Nieusma, T Holstein, CA Garcia, NK Hooper, KA Ravichandran, R Nelson, JW Sheffler, W Bloom, JD Lee, KK Ward, AB Yager, P Fuller, DH Wilson, IA Baker, D Nat Biotechnol Article Many viral surface glycoproteins and cell surface receptors are homo-oligomers(1-4), and hence can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites(5-8). In the first step, a small protein is designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We used this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The best characterized of these designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza. 2017-06-12 2017-07 /pmc/articles/PMC5512607/ /pubmed/28604661 http://dx.doi.org/10.1038/nbt.3907 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Strauch, EM
Bernard, SM
La, D
Bohn, AJ
Lee, PS
Anderson, CE
Nieusma, T
Holstein, CA
Garcia, NK
Hooper, KA
Ravichandran, R
Nelson, JW
Sheffler, W
Bloom, JD
Lee, KK
Ward, AB
Yager, P
Fuller, DH
Wilson, IA
Baker, D
Computational design of trimeric influenza neutralizing proteins targeting the hemagglutinin receptor binding site
title Computational design of trimeric influenza neutralizing proteins targeting the hemagglutinin receptor binding site
title_full Computational design of trimeric influenza neutralizing proteins targeting the hemagglutinin receptor binding site
title_fullStr Computational design of trimeric influenza neutralizing proteins targeting the hemagglutinin receptor binding site
title_full_unstemmed Computational design of trimeric influenza neutralizing proteins targeting the hemagglutinin receptor binding site
title_short Computational design of trimeric influenza neutralizing proteins targeting the hemagglutinin receptor binding site
title_sort computational design of trimeric influenza neutralizing proteins targeting the hemagglutinin receptor binding site
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5512607/
https://www.ncbi.nlm.nih.gov/pubmed/28604661
http://dx.doi.org/10.1038/nbt.3907
work_keys_str_mv AT strauchem computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite
AT bernardsm computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite
AT lad computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite
AT bohnaj computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite
AT leeps computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite
AT andersonce computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite
AT nieusmat computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite
AT holsteinca computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite
AT garciank computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite
AT hooperka computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite
AT ravichandranr computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite
AT nelsonjw computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite
AT shefflerw computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite
AT bloomjd computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite
AT leekk computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite
AT wardab computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite
AT yagerp computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite
AT fullerdh computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite
AT wilsonia computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite
AT bakerd computationaldesignoftrimericinfluenzaneutralizingproteinstargetingthehemagglutininreceptorbindingsite