Cargando…

Structural insight into the binding of C60-derivatives with enoyl-pyruvate transferase from Helicobacter pylori

Helicobacter pylori (H. pylori) is a human pathogen associated with acute gastritis and peptic ulcer. The MurA enzyme is an important drug target for the identification of ligands with improved efficacy and acceptable pharmaco-kinetic properties. We developed a homology model of H. Pylori MurA follo...

Descripción completa

Detalles Bibliográficos
Autores principales: Teimouri, Mohammad, Junaid, Muhammad, Khan, Abbas, Zhang, Houjin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5512856/
https://www.ncbi.nlm.nih.gov/pubmed/28729760
http://dx.doi.org/10.6026/97320630013185
Descripción
Sumario:Helicobacter pylori (H. pylori) is a human pathogen associated with acute gastritis and peptic ulcer. The MurA enzyme is an important drug target for the identification of ligands with improved efficacy and acceptable pharmaco-kinetic properties. We developed a homology model of H. Pylori MurA followed by refinement and molecular dynamics (MD) simulations. A total of 16 C60-derivatives were docked and its docking score were compared. Some of the known inhibitors were also similarly characterized and compared. Results show that five out of the sixteen C60-derivatives have good binding score. The MMPBSA analysis for the top five C60- derivatives shows good binding energy. This study reports the interaction patterns of selected C60 derivatives and MurA enzyme towards fullerene-based drug discovery.