Cargando…
Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins
The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC cla...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513272/ https://www.ncbi.nlm.nih.gov/pubmed/28725416 http://dx.doi.org/10.1002/ece3.2502 |
_version_ | 1783250628094459904 |
---|---|
author | Sallaberry‐Pincheira, Nicole González‐Acuña, Daniel Padilla, Pamela Dantas, Gisele P. M. Luna‐Jorquera, Guillermo Frere, Esteban Valdés‐Velásquez, Armando Vianna, Juliana A. |
author_facet | Sallaberry‐Pincheira, Nicole González‐Acuña, Daniel Padilla, Pamela Dantas, Gisele P. M. Luna‐Jorquera, Guillermo Frere, Esteban Valdés‐Velásquez, Armando Vianna, Juliana A. |
author_sort | Sallaberry‐Pincheira, Nicole |
collection | PubMed |
description | The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next‐generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans‐species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long‐term survival of the species. |
format | Online Article Text |
id | pubmed-5513272 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-55132722017-07-19 Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins Sallaberry‐Pincheira, Nicole González‐Acuña, Daniel Padilla, Pamela Dantas, Gisele P. M. Luna‐Jorquera, Guillermo Frere, Esteban Valdés‐Velásquez, Armando Vianna, Juliana A. Ecol Evol Original Research The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next‐generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans‐species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long‐term survival of the species. John Wiley and Sons Inc. 2016-09-28 /pmc/articles/PMC5513272/ /pubmed/28725416 http://dx.doi.org/10.1002/ece3.2502 Text en © 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Sallaberry‐Pincheira, Nicole González‐Acuña, Daniel Padilla, Pamela Dantas, Gisele P. M. Luna‐Jorquera, Guillermo Frere, Esteban Valdés‐Velásquez, Armando Vianna, Juliana A. Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins |
title | Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins |
title_full | Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins |
title_fullStr | Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins |
title_full_unstemmed | Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins |
title_short | Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins |
title_sort | contrasting patterns of selection between mhc i and ii across populations of humboldt and magellanic penguins |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513272/ https://www.ncbi.nlm.nih.gov/pubmed/28725416 http://dx.doi.org/10.1002/ece3.2502 |
work_keys_str_mv | AT sallaberrypincheiranicole contrastingpatternsofselectionbetweenmhciandiiacrosspopulationsofhumboldtandmagellanicpenguins AT gonzalezacunadaniel contrastingpatternsofselectionbetweenmhciandiiacrosspopulationsofhumboldtandmagellanicpenguins AT padillapamela contrastingpatternsofselectionbetweenmhciandiiacrosspopulationsofhumboldtandmagellanicpenguins AT dantasgiselepm contrastingpatternsofselectionbetweenmhciandiiacrosspopulationsofhumboldtandmagellanicpenguins AT lunajorqueraguillermo contrastingpatternsofselectionbetweenmhciandiiacrosspopulationsofhumboldtandmagellanicpenguins AT frereesteban contrastingpatternsofselectionbetweenmhciandiiacrosspopulationsofhumboldtandmagellanicpenguins AT valdesvelasquezarmando contrastingpatternsofselectionbetweenmhciandiiacrosspopulationsofhumboldtandmagellanicpenguins AT viannajulianaa contrastingpatternsofselectionbetweenmhciandiiacrosspopulationsofhumboldtandmagellanicpenguins |