Cargando…
Nonlinear joint models for individual dynamic prediction of risk of death using Hamiltonian Monte Carlo: application to metastatic prostate cancer
BACKGROUND: Joint models of longitudinal and time-to-event data are increasingly used to perform individual dynamic prediction of a risk of event. However the difficulty to perform inference in nonlinear models and to calculate the distribution of individual parameters has long limited this approach...
Autores principales: | Desmée, Solène, Mentré, France, Veyrat-Follet, Christine, Sébastien, Bernard, Guedj, Jérémie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513366/ https://www.ncbi.nlm.nih.gov/pubmed/28716060 http://dx.doi.org/10.1186/s12874-017-0382-9 |
Ejemplares similares
-
Quantum-Inspired Magnetic Hamiltonian Monte Carlo
por: Mongwe, Wilson Tsakane, et al.
Publicado: (2021) -
Clinical trial simulation to evaluate power to compare the antiviral effectiveness of two hepatitis C protease inhibitors using nonlinear mixed effect models: a viral kinetic approach
por: Laouénan, Cédric, et al.
Publicado: (2013) -
Hamiltonian Monte Carlo Inversion of Seismic Sources in Complex Media
por: Fichtner, Andreas, et al.
Publicado: (2018) -
Addressing nonlinearities in Monte Carlo
por: Dauchet, Jérémi, et al.
Publicado: (2018) -
Scalable gradients enable Hamiltonian Monte Carlo sampling for phylodynamic inference under episodic birth-death-sampling models
por: Shao, Yucai, et al.
Publicado: (2023)