Cargando…
ddRADseq reveals determinants for temperature-dependent sex reversal in Nile tilapia on LG23
BACKGROUND: In Nile tilapia sex determination is governed by a male heterogametic system XX/XY either on LG1 or LG23. The latter carries a Y-specific duplicate of the amh gene, which is a testis-determining factor. Allelic variants in the amh gene demonstrated to be major triggers for autosomal and...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513378/ https://www.ncbi.nlm.nih.gov/pubmed/28705237 http://dx.doi.org/10.1186/s12864-017-3930-0 |
_version_ | 1783250648815370240 |
---|---|
author | Wessels, Stephan Krause, Ina Floren, Claudia Schütz, Ekkehard Beck, Jule Knorr, Christoph |
author_facet | Wessels, Stephan Krause, Ina Floren, Claudia Schütz, Ekkehard Beck, Jule Knorr, Christoph |
author_sort | Wessels, Stephan |
collection | PubMed |
description | BACKGROUND: In Nile tilapia sex determination is governed by a male heterogametic system XX/XY either on LG1 or LG23. The latter carries a Y-specific duplicate of the amh gene, which is a testis-determining factor. Allelic variants in the amh gene demonstrated to be major triggers for autosomal and temperature-dependent sex reversal. Further, QTL on LG23 and LG20 show a temperature-responsiveness with influence on the phenotypic sex relative to the sex chromosomes. Here we present a ddRADseq based approach to identify genomic regions that show unusual large differentiation in terms of fixation index (F(ST)) between temperature-treated pseudomales and non-masculinized females using a comparative genome-scan. Genome-wide associations were identified for the temperature-dependent sex using a genetically all-female population devoid of amh-ΔY. RESULTS: Twenty-two thousand three hundred ninety-two SNPs were interrogated for the comparison of temperature-treated pseudomales and females, which revealed the largest differentiation on LG23. Outlier F(ST)-values (0.35–0.44) were determined for six SNPs in the genomic interval (9,190,077–11,065,693) harbouring the amh gene (9,602,693–9,605,808), exceeding the genome-wide low F(ST) of 0.013. Association analysis with a set of 9104 selected SNPs confirmed that the same genomic region on LG23 exerts a significant effect on the temperature-dependent sex. CONCLUSIONS: This study highlights the role of LG23 in sex determination, harbouring major determinants for temperature-dependent sex reversal in Nile tilapia. Furthermore F(ST) outlier detection proves a powerful tool for detection of sex-determining regions in fish genomes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-017-3930-0) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5513378 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-55133782017-07-19 ddRADseq reveals determinants for temperature-dependent sex reversal in Nile tilapia on LG23 Wessels, Stephan Krause, Ina Floren, Claudia Schütz, Ekkehard Beck, Jule Knorr, Christoph BMC Genomics Research Article BACKGROUND: In Nile tilapia sex determination is governed by a male heterogametic system XX/XY either on LG1 or LG23. The latter carries a Y-specific duplicate of the amh gene, which is a testis-determining factor. Allelic variants in the amh gene demonstrated to be major triggers for autosomal and temperature-dependent sex reversal. Further, QTL on LG23 and LG20 show a temperature-responsiveness with influence on the phenotypic sex relative to the sex chromosomes. Here we present a ddRADseq based approach to identify genomic regions that show unusual large differentiation in terms of fixation index (F(ST)) between temperature-treated pseudomales and non-masculinized females using a comparative genome-scan. Genome-wide associations were identified for the temperature-dependent sex using a genetically all-female population devoid of amh-ΔY. RESULTS: Twenty-two thousand three hundred ninety-two SNPs were interrogated for the comparison of temperature-treated pseudomales and females, which revealed the largest differentiation on LG23. Outlier F(ST)-values (0.35–0.44) were determined for six SNPs in the genomic interval (9,190,077–11,065,693) harbouring the amh gene (9,602,693–9,605,808), exceeding the genome-wide low F(ST) of 0.013. Association analysis with a set of 9104 selected SNPs confirmed that the same genomic region on LG23 exerts a significant effect on the temperature-dependent sex. CONCLUSIONS: This study highlights the role of LG23 in sex determination, harbouring major determinants for temperature-dependent sex reversal in Nile tilapia. Furthermore F(ST) outlier detection proves a powerful tool for detection of sex-determining regions in fish genomes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-017-3930-0) contains supplementary material, which is available to authorized users. BioMed Central 2017-07-14 /pmc/articles/PMC5513378/ /pubmed/28705237 http://dx.doi.org/10.1186/s12864-017-3930-0 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Wessels, Stephan Krause, Ina Floren, Claudia Schütz, Ekkehard Beck, Jule Knorr, Christoph ddRADseq reveals determinants for temperature-dependent sex reversal in Nile tilapia on LG23 |
title | ddRADseq reveals determinants for temperature-dependent sex reversal in Nile tilapia on LG23 |
title_full | ddRADseq reveals determinants for temperature-dependent sex reversal in Nile tilapia on LG23 |
title_fullStr | ddRADseq reveals determinants for temperature-dependent sex reversal in Nile tilapia on LG23 |
title_full_unstemmed | ddRADseq reveals determinants for temperature-dependent sex reversal in Nile tilapia on LG23 |
title_short | ddRADseq reveals determinants for temperature-dependent sex reversal in Nile tilapia on LG23 |
title_sort | ddradseq reveals determinants for temperature-dependent sex reversal in nile tilapia on lg23 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513378/ https://www.ncbi.nlm.nih.gov/pubmed/28705237 http://dx.doi.org/10.1186/s12864-017-3930-0 |
work_keys_str_mv | AT wesselsstephan ddradseqrevealsdeterminantsfortemperaturedependentsexreversalinniletilapiaonlg23 AT krauseina ddradseqrevealsdeterminantsfortemperaturedependentsexreversalinniletilapiaonlg23 AT florenclaudia ddradseqrevealsdeterminantsfortemperaturedependentsexreversalinniletilapiaonlg23 AT schutzekkehard ddradseqrevealsdeterminantsfortemperaturedependentsexreversalinniletilapiaonlg23 AT beckjule ddradseqrevealsdeterminantsfortemperaturedependentsexreversalinniletilapiaonlg23 AT knorrchristoph ddradseqrevealsdeterminantsfortemperaturedependentsexreversalinniletilapiaonlg23 |