Cargando…
The One-Step Pickering Emulsion Polymerization Route for Synthesizing Organic-Inorganic Nanocomposite Particles
Polystyrene-silica core-shell nanocomposite particles are successfully prepared via one-step Pickering emulsion polymerization. Possible mechanisms of Pickering emulsion polymerization are addressed in the synthesis of polystyrene-silica nanocomposite particles using 2,2-azobis(2-methyl-N-(2-hydroxy...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513463/ http://dx.doi.org/10.3390/ma3021186 |
Sumario: | Polystyrene-silica core-shell nanocomposite particles are successfully prepared via one-step Pickering emulsion polymerization. Possible mechanisms of Pickering emulsion polymerization are addressed in the synthesis of polystyrene-silica nanocomposite particles using 2,2-azobis(2-methyl-N-(2-hydroxyethyl)propionamide (VA-086) and potassium persulfate (KPS) as the initiator. Motivated by potential applications of “smart” composite particles in controlled drug delivery, the one-step Pickering emulsion polymerization route is further applied to synthesize polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica core-shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-monomer. The polystyrene/PNIPAAm-silica composite nanoparticles are temperature sensitive and can be taken up by human prostate cancer (PC3-PSMA) cells. |
---|