Cargando…
Algorithm for Predicting Disease Likelihood From a Submaximal Exercise Test
We developed a simplified automated algorithm to interpret noninvasive gas exchange in healthy subjects and patients with heart failure (HF, n = 12), pulmonary arterial hypertension (PAH, n = 11), chronic obstructive lung disease (OLD, n = 16), and restrictive lung disease (RLD, n = 12). They underw...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513526/ https://www.ncbi.nlm.nih.gov/pubmed/28757799 http://dx.doi.org/10.1177/1179548417719248 |
Sumario: | We developed a simplified automated algorithm to interpret noninvasive gas exchange in healthy subjects and patients with heart failure (HF, n = 12), pulmonary arterial hypertension (PAH, n = 11), chronic obstructive lung disease (OLD, n = 16), and restrictive lung disease (RLD, n = 12). They underwent spirometry and thereafter an incremental 3-minute step test where heart rate and SpO(2) respiratory gas exchange were obtained. A custom-developed algorithm for each disease pathology was used to interpret outcomes. Each algorithm for HF, PAH, OLD, and RLD was capable of differentiating disease groups (P < .05) as well as healthy cohorts (n = 19, P < .05). In addition, this algorithm identified referral pathology and coexisting disease. Our primary finding was that the ranking algorithm worked well to identify the primary referral pathology; however, coexisting disease in many of these pathologies in some cases equally contributed to the cardiorespiratory abnormalities. Automated algorithms will help guide decision making and simplify a traditionally complex and often time-consuming process. |
---|