Cargando…
Impairment of cold injury-induced muscle regeneration in mice receiving a combination of bone fracture and alendronate treatment
Alendronate, a nitrogen-containing bisphosphonate, is well established as a treatment for osteoporosis through regulation of osteoclast activity. Previously, the pharmacological effects of bisphosphonates on cells outside the bone environment have been considered irrelevant because bisphosphonates t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513540/ https://www.ncbi.nlm.nih.gov/pubmed/28715470 http://dx.doi.org/10.1371/journal.pone.0181457 |
Sumario: | Alendronate, a nitrogen-containing bisphosphonate, is well established as a treatment for osteoporosis through regulation of osteoclast activity. Previously, the pharmacological effects of bisphosphonates on cells outside the bone environment have been considered irrelevant because bisphosphonates target bone. Here we show that administration of alendronate impairs muscle regeneration in mice after bone fracture. A series of injections of alendronate alone or bone fracture alone did not affect muscle regeneration induced by cold injury. In contrast, alendronate treatment plus bone fracture severely impaired the regeneration of muscle that closely contacts the bone fracture site after cold injury. After cold injury, M-cadherin-positive myogenic cells disappeared in the damaged muscle areas of mice receiving the combination of alendronate treatment and bone fracture. The present results suggest that the muscle regeneration capacity is impaired by bone fracture in mice receiving alendronate treatment. The present research on the pharmacological effects of alendronate on muscle regeneration will aid in understanding of the in vivo action of alendronate on skeletal muscles. |
---|