Cargando…

Multi-omics Analysis of Periodontal Pocket Microbial Communities Pre- and Posttreatment

Periodontitis is a polymicrobial infectious disease that causes breakdown of the periodontal ligament and alveolar bone. We employed a meta-omics approach that included microbial 16S rRNA amplicon sequencing, shotgun metagenomics, and tandem mass spectrometry to analyze sub- and supragingival biofil...

Descripción completa

Detalles Bibliográficos
Autores principales: Califf, Katy J., Schwarzberg-Lipson, Karen, Garg, Neha, Gibbons, Sean M., Caporaso, J. Gregory, Slots, Jørgen, Cohen, Chloe, Dorrestein, Pieter C., Kelley, Scott T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513737/
https://www.ncbi.nlm.nih.gov/pubmed/28744486
http://dx.doi.org/10.1128/mSystems.00016-17
_version_ 1783250715635875840
author Califf, Katy J.
Schwarzberg-Lipson, Karen
Garg, Neha
Gibbons, Sean M.
Caporaso, J. Gregory
Slots, Jørgen
Cohen, Chloe
Dorrestein, Pieter C.
Kelley, Scott T.
author_facet Califf, Katy J.
Schwarzberg-Lipson, Karen
Garg, Neha
Gibbons, Sean M.
Caporaso, J. Gregory
Slots, Jørgen
Cohen, Chloe
Dorrestein, Pieter C.
Kelley, Scott T.
author_sort Califf, Katy J.
collection PubMed
description Periodontitis is a polymicrobial infectious disease that causes breakdown of the periodontal ligament and alveolar bone. We employed a meta-omics approach that included microbial 16S rRNA amplicon sequencing, shotgun metagenomics, and tandem mass spectrometry to analyze sub- and supragingival biofilms in adults with chronic periodontitis pre- and posttreatment with 0.25% sodium hypochlorite. Microbial samples were collected with periodontal curettes from 3- to 12-mm-deep periodontal pockets at the baseline and at 2 weeks and 3 months. All data types showed high interpersonal variability, and there was a significant correlation between phylogenetic diversity and pocket depth at the baseline and a strong correlation (rho = 0.21; P = 0.008) between metabolite diversity and maximum pocket depth (MPD). Analysis of subgingival baseline samples (16S rRNA and shotgun metagenomics) found positive correlations between abundances of particular bacterial genera and MPD, including Porphyromonas, Treponema, Tannerella, and Desulfovibrio species and unknown taxon SHD-231. At 2 weeks posttreatment, we observed an almost complete turnover in the bacterial genera (16S rRNA) and species (shotgun metagenomics) correlated with MPD. Among the metabolites detected, the medians of the 20 most abundant metabolites were significantly correlated with MPD pre- and posttreatment. Finally, tests of periodontal biofilm community instability found markedly higher taxonomic instability in patients who did not improve posttreatment than in patients who did improve (UniFrac distances; t = −3.59; P = 0.002). Interestingly, the opposite pattern occurred in the metabolic profiles (Bray-Curtis; t = 2.42; P = 0.02). Our results suggested that multi-omics approaches, and metabolomics analysis in particular, could enhance treatment prediction and reveal patients most likely to improve posttreatment. IMPORTANCE Periodontal disease affects the majority of adults worldwide and has been linked to numerous systemic diseases. Despite decades of research, the reasons for the substantial differences among periodontitis patients in disease incidence, progressivity, and response to treatment remain poorly understood. While deep sequencing of oral bacterial communities has greatly expanded our comprehension of the microbial diversity of periodontal disease and identified associations with healthy and disease states, predicting treatment outcomes remains elusive. Our results suggest that combining multiple omics approaches enhances the ability to differentiate among disease states and determine differential effects of treatment, particularly with the addition of metabolomic information. Furthermore, multi-omics analysis of biofilm community instability indicated that these approaches provide new tools for investigating the ecological dynamics underlying the progressive periodontal disease process.
format Online
Article
Text
id pubmed-5513737
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-55137372017-07-25 Multi-omics Analysis of Periodontal Pocket Microbial Communities Pre- and Posttreatment Califf, Katy J. Schwarzberg-Lipson, Karen Garg, Neha Gibbons, Sean M. Caporaso, J. Gregory Slots, Jørgen Cohen, Chloe Dorrestein, Pieter C. Kelley, Scott T. mSystems Research Article Periodontitis is a polymicrobial infectious disease that causes breakdown of the periodontal ligament and alveolar bone. We employed a meta-omics approach that included microbial 16S rRNA amplicon sequencing, shotgun metagenomics, and tandem mass spectrometry to analyze sub- and supragingival biofilms in adults with chronic periodontitis pre- and posttreatment with 0.25% sodium hypochlorite. Microbial samples were collected with periodontal curettes from 3- to 12-mm-deep periodontal pockets at the baseline and at 2 weeks and 3 months. All data types showed high interpersonal variability, and there was a significant correlation between phylogenetic diversity and pocket depth at the baseline and a strong correlation (rho = 0.21; P = 0.008) between metabolite diversity and maximum pocket depth (MPD). Analysis of subgingival baseline samples (16S rRNA and shotgun metagenomics) found positive correlations between abundances of particular bacterial genera and MPD, including Porphyromonas, Treponema, Tannerella, and Desulfovibrio species and unknown taxon SHD-231. At 2 weeks posttreatment, we observed an almost complete turnover in the bacterial genera (16S rRNA) and species (shotgun metagenomics) correlated with MPD. Among the metabolites detected, the medians of the 20 most abundant metabolites were significantly correlated with MPD pre- and posttreatment. Finally, tests of periodontal biofilm community instability found markedly higher taxonomic instability in patients who did not improve posttreatment than in patients who did improve (UniFrac distances; t = −3.59; P = 0.002). Interestingly, the opposite pattern occurred in the metabolic profiles (Bray-Curtis; t = 2.42; P = 0.02). Our results suggested that multi-omics approaches, and metabolomics analysis in particular, could enhance treatment prediction and reveal patients most likely to improve posttreatment. IMPORTANCE Periodontal disease affects the majority of adults worldwide and has been linked to numerous systemic diseases. Despite decades of research, the reasons for the substantial differences among periodontitis patients in disease incidence, progressivity, and response to treatment remain poorly understood. While deep sequencing of oral bacterial communities has greatly expanded our comprehension of the microbial diversity of periodontal disease and identified associations with healthy and disease states, predicting treatment outcomes remains elusive. Our results suggest that combining multiple omics approaches enhances the ability to differentiate among disease states and determine differential effects of treatment, particularly with the addition of metabolomic information. Furthermore, multi-omics analysis of biofilm community instability indicated that these approaches provide new tools for investigating the ecological dynamics underlying the progressive periodontal disease process. American Society for Microbiology 2017-06-20 /pmc/articles/PMC5513737/ /pubmed/28744486 http://dx.doi.org/10.1128/mSystems.00016-17 Text en Copyright © 2017 Califf et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Califf, Katy J.
Schwarzberg-Lipson, Karen
Garg, Neha
Gibbons, Sean M.
Caporaso, J. Gregory
Slots, Jørgen
Cohen, Chloe
Dorrestein, Pieter C.
Kelley, Scott T.
Multi-omics Analysis of Periodontal Pocket Microbial Communities Pre- and Posttreatment
title Multi-omics Analysis of Periodontal Pocket Microbial Communities Pre- and Posttreatment
title_full Multi-omics Analysis of Periodontal Pocket Microbial Communities Pre- and Posttreatment
title_fullStr Multi-omics Analysis of Periodontal Pocket Microbial Communities Pre- and Posttreatment
title_full_unstemmed Multi-omics Analysis of Periodontal Pocket Microbial Communities Pre- and Posttreatment
title_short Multi-omics Analysis of Periodontal Pocket Microbial Communities Pre- and Posttreatment
title_sort multi-omics analysis of periodontal pocket microbial communities pre- and posttreatment
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513737/
https://www.ncbi.nlm.nih.gov/pubmed/28744486
http://dx.doi.org/10.1128/mSystems.00016-17
work_keys_str_mv AT califfkatyj multiomicsanalysisofperiodontalpocketmicrobialcommunitiespreandposttreatment
AT schwarzberglipsonkaren multiomicsanalysisofperiodontalpocketmicrobialcommunitiespreandposttreatment
AT gargneha multiomicsanalysisofperiodontalpocketmicrobialcommunitiespreandposttreatment
AT gibbonsseanm multiomicsanalysisofperiodontalpocketmicrobialcommunitiespreandposttreatment
AT caporasojgregory multiomicsanalysisofperiodontalpocketmicrobialcommunitiespreandposttreatment
AT slotsjørgen multiomicsanalysisofperiodontalpocketmicrobialcommunitiespreandposttreatment
AT cohenchloe multiomicsanalysisofperiodontalpocketmicrobialcommunitiespreandposttreatment
AT dorresteinpieterc multiomicsanalysisofperiodontalpocketmicrobialcommunitiespreandposttreatment
AT kelleyscottt multiomicsanalysisofperiodontalpocketmicrobialcommunitiespreandposttreatment