Cargando…
A Fluctuation Equation of State for Prediction of High-Pressure Densities of Ionic Liquids
During this work, we demonstrate, for the first time, that the volumetric properties of pure ionic liquids could be truly predicted as a function of temperature from 219 K to 473 K and pressure up to 300 MPa. This has been achieved by using only density and isothermal compressibility data at atmosph...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514048/ https://www.ncbi.nlm.nih.gov/pubmed/28717227 http://dx.doi.org/10.1038/s41598-017-06225-9 |
Sumario: | During this work, we demonstrate, for the first time, that the volumetric properties of pure ionic liquids could be truly predicted as a function of temperature from 219 K to 473 K and pressure up to 300 MPa. This has been achieved by using only density and isothermal compressibility data at atmospheric pressure through the Fluctuation Theory-based Tait-like Equation of State (FT-EoS). The experimental density data of 80 different ionic liquids, described in the literature by several research groups as a function of temperature and pressure, was then used to provide comparisons. Excellent predictive capability of FT-EoS was observed with an overall relative absolute average deviation close to 0.14% for the 15,298 data points examined during this work. |
---|